mpmath

Screenshot Software:
mpmath
Szczegóły programowe:
Wersja: 0.17
Filmu: 12 May 15
Wywoływacz: Fredrik Johansson
Licencja: Wolny
Popularność: 81

Rating: 3.0/5 (Total Votes: 1)

mpmath zastępuje obrocie / złożonych typów Pythona oraz modułów matematyka / cmath z precyzyjnych oraz wykładnik nieograniczonych rozmiarach. Program jest w całości napisany mpmath w Pythonie, bez zależności zewnętrzne, a tym samym prowadzi niemal wszędzie, bez potrzeby kompilacji.
Aby zainstalować, rozpakuj archiwum mpmath i uruchomić
  python setup.py install
Dokumentacja i sposób użycia:
Import mpmath z
    z mpmath import *
To zapewnia MPF klas i RPP, które działają analogicznie do pływaka Pythona i złożonych typów:
    >>> MPF (2) / MPF (3)
    MPF ("+0,66666666666666663")
    >>> Mpc (0, -1)
    mpc (Real = '0', urojona = "- 1")
    >>> MPF (-0,6) ** MPF (-0,2)
    mpc (Real = '+0,89603999408558288 ", urojona =' - +0,65101116249684809")
Dla ładniejszej wyjścia (które również ukrywa drobne błędy zaokrągleń), należy użyć print () lub str:
    >>> Print MPF (2) / MPF (3)
    +0,666666666666667
    >>> Print mpc (1 + 2j) ** 0,5
    (1,27201964951407 + 0.786151377757423j)
Precyzja jest kontrolowana przez właściwości mpf.prec (liczba bitów) i mpf.dps (liczba miejsc po przecinku). Właściwości te są związane, więc zmiana jednego automatycznie aktualizuje inne dopasować. Ustawianie Prec lub dps zmienia precyzję w którym wszystkie operacje są przeprowadzane i liczba cyfr do wyświetlania podczas drukowania numerów. Domyślnie jest to
prec = 53 = 15 i dps, podobnie jak pływa Python.
    >>> Mpf.dps = 30
    >>> MPF (2) / MPF (3)
    MPF ("0,66666666666666666666666666666663")
    >>> Print _
    ,666666666666666666666666666667
    >>> mpf.dps = 15 # przywrócić domyślne
Można tworzyć MPFS i MPC z numerów Pythona, lub połączyć MPFS i MPC z numerami Pythona w operacji arytmetycznych, ale należy pamiętać, że regularne Python pływa tylko skończoną precyzję. Aby zainicjować MPF o wartości pełnej precyzji, należy użyć ciąg:
    >>> MPF (0,1)
    MPF ("+0,10000000000000001") # samą dokładnością jak pływaka
    >>> Mpf.dps = 50
    >>> MPF (0,1)
    MPF ("0,1000000000000000055511151231257827021181583404541016") # śmieci
    >>> MPF ("0,1")
    MPF ("0,1000000000000000000000000000000000000000000000000001") # ok
Następujące funkcje dostępne są standardowe i wspierać oba argumenty prawdziwe i złożone:
  sqrt, exp, log, moc, cos, sin, tan, pałka, sinh, tanh,
  acos, asin, atan, acosh, asinh, atanh
Przykład:
    >>> Mpf.dps = 15
    >>> cos druku (1)
    +0,540302305868140
    >>> Mpf.dps = 50
    >>> cos druku (1)
    0,54030230586813971740093660744297660373231042061792
Niektóre rzadkie funkcje dostępne są również: gamma (funkcja gamma), silni, ERF (funkcja błędu), lower_gamma / upper_gamma (niekompletna funkcja gamma) i zeta (funkcja zeta Riemanna).
Wreszcie, funkcje convenience hypot i atan2 są dostępne (zdefiniowany tylko dla liczb rzeczywistych).
Stałe pi, e, i cgamma (stała Eulera) są dostępne także specjalne obiekty, które zachowują się jak MPFS ale których wartości automatycznie dostosuje się do precyzji.
    >>> Mpf.dps = 15
    >>> Print pi
    +3,14159265358979
    >>> Mpf.dps = 50
    >>> Print pi
    3,1415926535897932384626433832795028841971693993751
    >>> Mpf.dps = 15
    >>> E ** (- pi * 1j)
    mpc (real = "- 1", urojona = '- 1.2289836075083701E-16')
    >>> Mpf.dps = 50
    >>> E ** (- pi * 1j)
    mpc (real = "- 1", urojona = '1,0106 [...] E-51 ")
Reżyseria zaokrąglenie jest częściowo zrealizowane. Na przykład, to oblicza i sprawdza się 15-cyfrowy przedział przybliżenie pi:
    >>> Mpf.dps = 15
    >>> Mpf.round_down (); = + pi pi1
    >>> Mpf.round_up (); pi2 = + pi
    Pi1 >>>
    MPF ("3,1415926535897931")
    >>> Pi2
    MPF ("3,1415926535897936")
    >>> Mpf.dps = 30
    >>> PI1     True

Co nowego w tym wydaniu:

  • Ogólne
  • Teraz można tworzyć wiele obiektów kontekstowe i użyć metod kontekstu lokalnego zamiast globalnych państwowych / funkcji (np mp2 = mp.clone (); mp2.dps = 50; mp2.cos (3)). Nie wszystkie funkcje zostały przeliczone metod kontekstowych, a są pewne błędy, dlatego ta funkcja jest obecnie eksperymentalne.
  • Jeśli mpmath jest zainstalowany w Sage 4.0 lub nowszej, mpmath będą teraz używać sage.Integer zamiast Python długo wewnętrznie.
  • Usunięto przypadki starym stylu dzielenia liczby całkowitej od kodzie.
  • runtests.py można uruchomić z -coverage do generowania statystyk pokrycia.
  • Rodzaje i podstawowe działania arytmetyczne,
  • Poprawiono porównanie z inf.
  • Zmiana formatu repr typu interwałowego mpi do eval (repr (x)) == x.
  • Ulepszone drukowanie odstępach czasu, z konfiguracją formatu wyjściowego (nadesłane przez Vinzent Steinberg oparty na kodzie Don Peterson).
  • Odstępy wspierane przez mpmathify () i nstr () (wniesionego przez Vinzent Steinberg).
  • RPP jest obecnie hashable.
  • Dodano więcej opcji formatowania wewnętrznej to_str funkcji.
  • Szybsza czystej Python pierwiastek kwadratowy.
  • Usuń spacje daje błędne wartości w str- & gt;. Mpf konwersji
  • Rachunek
  • Poprawiono nsum () z Eulera-Maclaurina sumowanie, które wcześniej ignorować indeks początkowy i sumę od n = 1.
  • Wdrożone Metoda Newtona dla findroot () (nadesłane przez Vinzent Steinberg).
  • algebry liniowej
  • Poprawiono LU_decomp () do rozpoznawania pojedynczych macierzy (nadesłane przez Vinzent Steinberg).
  • Różne funkcje norma zostały zastąpione przez normy normy wektora funkcji generycznych (x, p) i rodzajowe funkcji mnorm normę macierzy (x, p).
  • Funkcje specjalne:
  • Niektóre wewnętrzne bufory zostały zmienione na zawsze nieco overallocate precyzją. To rozwiązuje najgorszy zachowanie gdzie wcześniej buforowane wartość musiała być przeliczane na każdym wywołaniu funkcji.
  • Poprawiono log (mała ilość) powrót bzdury na dużą precyzją.
  • Poprawiono gamma () i funkcje pochodne, takie jak dwumianowy () powrót złe wyniki w całkowitych jest podzielna wejść przez dużą moc 2.
  • Poprawiono asin () nie zgłasza wyjątek w wysokiej precyzji (nadesłane przez Vinzent Steinberg).
  • Zoptymalizowany kod AGM dla logarytmu naturalnego, dzięki czemu wcześniej stosowaną metodą Newtona na dokładności pośrednich nieaktualne.
  • Funkcja AGM średnia arytmetyczna, geometryczna () jest teraz o wiele szybsze, przy niskiej precyzji.
  • Szybsze implementacje ellipk () i ellipe ().
  • Analityczne kontynuacja ellipe (), aby | x | & gt;. = 1 realizowane
  • Funkcja dziennika Wdrożony gamma (loggamma ()) z odpowiednimi cięciami branży (powolne, wdrożeniowych zastępczy).
  • Poprawiono cięcia gałęzi o hyperfac ().
  • Wdrożone Riemanna-Siegel Z-function (siegelz ()).
  • Funkcja theta Wdrożony Riemanna-Siegel (siegeltheta ()).
  • Wdrożone obliczenie punktów Gram (grampoint ()).
  • Wdrożone obliczenie funkcji zeta Riemanna zer (zetazero ()).
  • Zaimplementowane funkcje zliczania prime: powoli, dokładna wersja (primepi ()). i szybka wersja przybliżone (primepi2 ()), który daje przedział obwiedni.
  • Funkcja Wdrożony prime liczenia Riemanna R (riemannr ()).
  • Wprowadzone numery wielomiany (Bell i dzwon ()).
  • Funkcja expm1 Wdrożony ().
  • Wdrożone "funkcja wielowykładniczym" (polyexp ()).
  • Wdrożone liczby bliźniacze stałe (twinprime) i stałe (Mertens Mertens ').
  • Funkcja zeta Wdrożony premier (primezeta ()).

Co nowego w wersji 0.10:

  • Dodatki obejmują kreślenia wsparcia, macierze i algebry liniowej, nowe funkcje korzeniowe rozpoznawczej i kwadratury algorytmy, wzmocnione interwał arytmetyki i niektóre nowe funkcje specjalne.
  • Wiele ulepszeń prędkości zostały popełnione (kilka funkcji, są o wiele szybsze niż w 0.9), i różne błędy zostały poprawione.
  • Co ważne, to wydanie poprawki mpmath do pracy z Python 2.6.

Wymagania :

  • Python

Podobne oprogramowanie

PG Calculator
PG Calculator

3 Jun 15

Giac/Xcas
Giac/Xcas

2 Jun 15

Sympy
Sympy

20 Feb 15

Eigen
Eigen

19 Feb 15

Inne programy z deweloperem Fredrik Johansson

mpmath
mpmath

14 Apr 15

Komentarze do mpmath

Komentarze nie znaleziono
Dodaj komentarz
Włącz zdjęć!