
PDFspy
Version 2.0
Copyright 2005-2014, Apago, Inc.

Everything you wanted to know
about your PDF…

1. Introduction

PDFspy is the ultimate “get info” utility for your PDF documents. It can extract a
comprehensive list of attributes from a PDF file into an XML-based format. This list can
incorporate as little or as much information as you need - whether it’s a list of used font,
security settings or color choices.

Some example uses for PDFspy might be:

 Asset management system: extract page count, metadata, font & image information
 Document management: determine text or image only documents, extract comments
 Prefight: extract information about colorspaces, compression & font types
 Validation: fnd broken PDF fles
 Developers: easily examine the structure of complex PDF documents

2. Installing PDFspy

Installation

Windows

PDFspy for Windows is delivered with an Installer. Simply double-click on the Installer
application and follow the instructions. This manual covers the features of the PDFspy
command line program (CLI) that is in the archive.

Mac OS X

PDFspy for Mac OS X is delivered as a ZIP archive containing the PDFspy command
line interface (CLI).

To install the software expand the archive by double clicking on the archive file and then
copy the pdfspy directory to the /Applications directory or another location. You may also

wish to add the installation path to the PATH environment variable.

Unix

PDFspy for Unix is delivered as a gzip compressed tar file. You extract the contents of
this with GNU tar with either:

tar -xvz -f pdfspy_1.7.X_<OS>.tar.gz
or

gunzip pdfspy_17.X_<OS>.tar.gz
tar xvf pdfspy_1.7.X_<OS>.tar

There is a README.txt file in the pdfspy directory with installation instructions specific
to the OS.

Obtaining a serial number

You will need to run the pdfspy program to retrieve your system’s “host id”. Send an
email to support@apago.com with this information requesting a pdfspy license key.

Entering a serial number

To register the application, run it from the command line with only the -r parameter to
specify the serial number. For example:

pdfspy -r XXXXXXXXXXXXXXXXX

This will create a file in the same directory as PDFspy called “license.psl” which is your
registration file. PDFspy needs to be able to locate this in order to run, so we recommend
that you either keep it in the same directory OR use the -license command line option
when running the software.

3. Using PDFspy

You can use PDFspy either manually on the command line, or (more likely) by
integrating it into your server tools using integration languages such as ASP, Visual
Basic, Perl, and Python.
The simplest command to retrieve information about a PDF file would look like:

pdfspy somedoc.pdf

This command will create an XML description of everything that PDFspy can determine
about the PDF. Because this output can be quite long as not as easy to work with directly

mailto:support@apago.com

as “stdout” (standard output), it is recommend that you add the -o option to the
command line to have PDFspy write the XML to a file of your choosing. You can either
specify a filename (and location) or just a location, which will have PDFspy name the
output file the same as the PDF (except .xml instead of .pdf).

pdfspy -o output.xml somedoc.pdf

In order to reduce the plethora of information that PDFspy generates, you can use the
-skip option along with comma delimited string listing the features you do not need.
For example, to not include information about annotations, bookmarks and form fields
contained in the PDF, we might say:

pdfspy -skip “annots,outlines,fields” -o output.xml somedoc.pdf

The list of valid strings that can be included in the -skip options are:

actions annots colors fields

fonts images links names

ocgs opi outlines pagedata

patterns pdfx shadings text

transparency vectors xmp

Another way to select which information is extracted is the -only option. It takes the
same comma delimited string as -skip. Only the features listed will be extracted. Make
sure you enable pagedata if you want related information such as colors and fonts.

If you only wish information about a subset of the pages of a PDF, you can use the -f
and -l options to specify the first and last page (respectively) to be processed. For
example, to get information about only the second page of the PDF, we might say:

pdfspy -f 2 -l 2 -o output.xml somedoc.pdf

If you would like more information about what actions the software is performing and to
follow its progress in doing so, you can add -progress to the command line.
PDFspy also supports the writing of this information to a log file (-log filename),
which you could use as follows:

pdfspy -log log.txt -progress somedoc.pdf

If you need to process password protected PDFs, you can use the -opw and -upw
options to specify either the document’s owner or user password. If you attempt to
process a secure PDF without providing this information, PDFspy will return an error.
You can also take advantage of “wildcards” to provide PDFspy with a list of files to be
processed and then specify a directory for the output. For example, to export information

about all of the PDF files in the current directory and place them in an existing directory
called outputDir, you could use:

pdfspy -o outputDir *.pdf

Another unique feature of PDFspy is the ability to use it as a PDF validation tool. When
the -validate option is added to the command line, PDFspy will perform many of the
same operations that Acrobat will in order to render each page to screen including
checking font and image data. Any errors and issues discovered will be reported to the
log. The validate option does not perform a comprehensive verification against the Adobe
PDF Specification. The primary difference between validate and non-validate modes is
that PDFspy will ‘execute’ the drawing operations for each PDF page. Think of it as a
dynamic analysis of the PDF file instead a static analysis. The validate option is useful
for finding PDF files that have invalid commands or have been corrupted in some way,
eg. truncated image data.

pdfspy -validate -log report.txt -o output.xml somedoc.pdf

You can always get help from PDFspy by using any of the following command line
options.

-v print copyright and version info
-h print usage information

PDFspy also supports remembering user preferences. These preferences are stored in an
optional PDFspy.setup file. On Windows and OS X systems this file is stored in the same
directory as the executable, on Unix systems it is stored in
/usr/apago/setups/PDFspy.setup. You may edit this file with any standard text editor
(notepad, vi, ...). The format is a simple “option = value” format where the option is the
command line parameter without the leading '-' and the value is either the command line
value if the argument takes a value or “true” or “false” if it is a boolean parameter. This
file is completely optional and the pdfspy program will operate without it.

4. PDFspy Output

PDFspy writes its output as an XML documents using a custom grammar optimized for
storing information about the attributes/features of a PDF file. This section will document
that grammar to enable programmatic and human understanding of the contents.

PDFspy output files will be valid XML documents with a root element of <pdfattrs>.
The <pdfattrs> element will have a series of attributes that reflect some general
information about the document. An example might look like:

<?xml version=”1.0” encoding=”UTF-8”?>
<pdfattrs encrypted=”false” filesize=”423948” linearized=”false”
objects=”85” pages=”6” tagged=”false” version=”1.3” >
</pdfattrs>

The complete list of attributes that might appear on the <pdfattrs> element, the
potential values and a description of each can be found in the following table.

path string full path to the file in the local file system

version string PDF version (eg. 1.1, 1.3, 1.7, etc.)

compressed-objects true/false does the PDF contain PDF 1.5 compressed objects

xref-streams true/false does the PDF contain PDF 1.5 xref streams

id or id1 & id2 hex string one or more unique ID’s for the PDF

linearized true/false is the PDF prepared for “fast web viewing”

tagged true/false does the PDF contain tags/structure for accessibility

pages integer number of pages in the PDF

objects integer number of objects in the PDF

filesize integer size of the PDF on disk

encrypted true/false is the PDF encrypted/secured

usage-rights true/false does the PDF contain Acrobat Reader Permissions

4.1 <info>

Almost every PDF will produce an <info> element as a child to <pdfattrs>. This
element will contain all the information from the original PDF metadata - called the “Info
Dictionary”. It is a set of “key/value” pairs of strings. The name of each child of <info>
is the “key” and its contents are the value.

Example:
<info>

<Creator>Word</Creator>

<Producer>Mac OS X 10.2 Quartz PDFContext</Producer>
<CreationDate>09/10/02 04:05:10</CreationDate>
<ModDate>09/10/02 04:05:10</ModDate>

</info>

4.2 <Extensions>

In 2007, Adobe submitted the PDF file format to the standards body ISO. The ISO
published ISO 32000-1:2008 which documented the PDF 1.7 file format as an open
international standard. Any additions to PDF 1.7 are considered “extensions.” The
<Extensions> element contains the information about any extensions in the PDF.

Example:
<Extensions>

<ADBE BaseVersion="1.7" ExtensionLevel="3" />
</Extensions>

4.3 <permissions>

If the PDF document is encrypted, then PDFspy will add a <permissions> element as a
child to <pdfattrs>. This element will contain children elements that specify which
features of the PDF have been enabled or not.

Example:
<permissions>

<printing>yes</printing>
<copying>yes</copying>
<changing>yes</changing>
<commenting>yes</commenting>
<form-filling>yes</form-filling>
<screen-reading>yes</screen-reading>
<document-assembly>yes</document-assembly>
<high-quality-printing>yes</high-quality-printing>

</permissions>

4.4 <ViewerPreferences>

A PDF document may contain some information in it that tell Acrobat how to display it to
the user with respect to the Acrobat user interface. For example, the PDF may not want
Acrobat to display its toolbar or menubar when it is open. This element contains a series
of attributes that document which items are enabled or not.

Example:
<ViewerPreferences CenterWindow=”true” DisplayDocTitle=”false”
HideMenubar=”true” HideToolbar=”true” HideWindowUI=”false”/>

4.5 <OutputIntent>

A PDF document that has been prepared according to the international standard (ISO)
PDF/X or PDF/A standards will contain a special set of objects called an OutputIntent.

Example:
<OutputIntents>

<v0 OutputConditionIdentifier=”CGATS TR 001”
RegistryName=”http://www.color.org” S=”GTS_PDFX”
Type=”OutputIntent”/>
</OutputIntents>

4.6 <OCGs>

Acrobat 6 (PDF 1.5) introduced a new feature to PDF called Optional Content Groups
(OCGs), commonly know as layers, in the user interface. If a PDF contains any of these
OCGs, then their names and some basic attributes will be exported in a <OCGs> child
element.

Example:
<OCGs>

<ocg name=”GraphicsOC”/>
<ocg name=”TextOC”/>

</OCGs>

4.7 <action>

When a PDF document is first opened, Acrobat can perform a series of actions from
going to a particular page (and view) to playing a sound or running a JavaScript. Any
actions found will be output in an <action> child element whose attributes provide
details about the action itself.

Examples:
<action page=”1” view=”Fit”/>
<action key=”OpenAction” page=”1” type=”GoTo” view=”XYZ” view-
left=”-32768” view-top=”-32768” view-zoom=”0.25”/>

4.8 <names>

PDF documents may contain a series of objects that will be referred to indirectly via their
names instead of their object numbers. These objects are organized here, but their
subtypes (which become child elements to <names>).

Examples:
<names>

<JavaScript>

<script name=”Calculator”>var
display=this.getField("Display"); var
func=this.getField("Func"); all_cancel();</script>

</JavaScript>
<AP>

<appearances name=”Draft”/>
<appearances name=”FacesGrumpy”/>
<appearances name=”FacesSmirk”/>
<appearances name=”FacesSurprised”/>

</AP>
<EmbeddedFiles>

<file name=”Sample.joboptions”>Sample.joboptions</file>
</EmbeddedFiles>

</names>

4.9 <AcroForm>

One common type of PDF is a “form” - a PDF that contains a variety of elements where
users can enter data or interact just as that might with a web browser or electronic version
of a paper form. In PDF “lingo” there are called “AcroForms”, and so information about
them is placed into an <AcroForm> element. The children elements will always contain a
<fields> (which is the list of individual <field> elements with attributes and children that
tell you all you need to know about the fields), but may also contain other information.

Example:
<AcroForms>

<fields>
<field background-color=”[0 0 0]” border-

color=”[0.50195 0.50195 0.50195]” border-style=”B” border-
width=”2” default-appearance=”/Helv 21 Tf 1 1 0 rg” default-
value=”0” height=”47.7612” name=”Display” spell-check=”true”
text-alignment=”right” type=”text” value=”0” width=”204.478”
x=”197.393” y=”518.905”>

<actions>
<action key=”K”

type=”JavaScript”>AFNumber_Keystroke(8, 0, 0, 0, "",
true);</action>

<action key=”F”
type=”JavaScript”>AFNumber_Format(8, 0, 0, 0, "",
true);</action>

</actions>
</field>
<field default-appearance=”/Helv 0 Tf 0 1 1 rg”

name=”Nine” type=”push-button”>
<kids>

<field background-color=”[0 0 0]” border-
color=”[0.50195 0.50195 0.50195]” border-style=”B” border-
width=”2” caption=”9” caption-alternate=”9” default-
appearance=”/Helv 0 Tf 1 1 1 rg” height=”28” hilight-mode=”P”
width=”37” x=”274” y=”441”>

<actions/>
</field>

</kids>
</field>

</fields>
</AcroForms>

4.10 <bookmarks>

Bookmarks or outlines are the elements of a PDF usually displayed on the left side of
Acrobat in a hierarchical fashion to enable you to navigate around the PDF. Each
bookmark may be the parent of other bookmarks and have similar attributes to
<actions>.

Example:
<bookmarks>

<bookmark page=”3” title=”Table des matières” type=”GoTo”
view=”XYZ” view-top=”756”/>

<bookmark page=”9” title=”Préface” type=”GoTo” view=”XYZ”
view-top=”786”>

<bookmark page=”10” title=”Aperçu du système” type=”GoTo”
view=”XYZ” view-top=”733”/>

<bookmark page=”10” title=”Aperçu du document”
type=”GoTo” view=”XYZ” view-top=”501”/>

</bookmark>
</bookmarks>

4.11 <page>

For every page in a PDF, there will be a <page> element. This element is the root of a
series of child elements and attributes that will provide all the information that is page-
specific.

The attributes for the <page> element are:

width integer width of the page, in PDF units

height integer height of the page, in PDF units

Id integer page number

rotate integer page rotation, if any

user-unit integer PDF 1.6 scaling factor

thumbnail true/false does the page have an embedded thumbnail

label string the page’s textual label (if any)

separation string name of the color in a pre-separated PDF

4.11.1 <boxes>

Every page in a PDF must have at least one “box” that define the physical size of the
page - the MediaBox. It may, in addition, have up to 4 other boxes that define other areas
of the page of importance to other processes.

Example:
<boxes>

<MediaBox height=”1224” width=”792” x=”0” y=”0”/>
<CropBox height=”688.65” width=”464.6” x=”13” y=”523.35”/>
<BleedBox height=”557.813” width=”331.25” x=”129.688”

y=”613.062”/>
<TrimBox height=”529.688” width=”293.75” x=”148.438”

y=”622.437”/>
</boxes>

4.11.2 <fonts>

In order to place text on a page, there must be a font associated with it - and this child
element lists the id’s of each font that is referenced/used on this page. The ids can be used
to find the matching child element of <pdfattrs>.

Example:
<fonts>

</fonts>

4.11.3 <annots>

One of the features of PDF being used more and more each day is the ability to comment
and markup a PDF with strikeouts, notes, and such. In addition, multimedia such as
sounds and movies can be embedded. These elements call fall under the category of an
“Annotation” and all such annotations are listed here in the <annots> element.

Here is an example of some <annot> elements:
<annots>

<annot color=”[1 1 0]” colorspace=”DeviceRGB” height=”22”
modification-date=”02/13/01 12:00:43” name=”3900012” type=”Text”
width=”18” x=”72” y=”631”>This is a note!</annot>

<annot border-width=”0” color=”[]” colorspace=”None” default-
appearance=”[1 0 0] r /HeOb 18 Tf” height=”69” modification-
date=”02/13/01 12:01:33” name=”3900018” type=”FreeText”
width=”94” x=”24” y=”545”>This is a simple text
annotation</annot>

<annot color=”[0 1 0]” colorspace=”DeviceRGB” height=”20”
modification-date=”02/13/01 12:02:12” name=”390002c” type=”Sound”
width=”20” x=”22” y=”529”>Silly sound</annot>

<annot color=”[1 1 0]” colorspace=”DeviceRGB” height=”97”
modification-date=”07/13/05 14:01:03” name=”3900039”
opacity=”0.505005” type=”Stamp” width=”97” x=”512” y=”693”/>
</annots>

4.11.4 <links>

It is very common to have a PDF documents with active links/hyperlinks to other parts of
the same PDF, another PDF or any arbitrary URI/URL. These links are listed here in the
<links> element, with individual <link> elements with attributes similar to
<action> for all the details of the link.

<links>
<link border-style=”S” border-width=”1” height=”14.9998”

hilight-mode=”I” page=”2” type=”GoTo” view=”Fit” width=”13.2351”
x=”449.112” y=”33.5374”>

<actions/>
</link>
<link border-style=”S” border-width=”1” height=”15.8822”

hilight-mode=”I” href=”http://www.thelivingshadow.com/”
type=”URI” width=”299.997” x=”110.293” y=”33.5374”>

<actions/>
</link>
<link height=”45.9249” name=”ÓÏÉªÇGríjKX?Main” page=”1”

type=”GoTo” view=”XYZ” view-top=”748.042” width=”180.704”
x=”41.4327” y=”431.56”>

<actions/>
</link>

<link height=”47.9216”
href=”http://www.lazerware.com/software.html” type=”URI”
width=”182.701” x=”39.4359” y=”359.678”>

<actions/>
</link>

</links>

4.11.5 <actions>

In addition to document level actions (see 4.6), each page my have a series of Actions
associated with it. If present, an <actions> element will be present along with each
<action> child element.

Here is an example of a page’s open action that will start playing a movie:
<actions>

<action key=”O” title=”Sample” type=”Movie”/>
</actions>

4.11.6 <vectors>

A page of a PDF document may contain three types of data - vectors (lines, paths, etc.),
text and raster/bitmap images. If the document contains vector data, then this element
will be present with two attributes - paths & subpaths. Each number represents a
count of the total number of each on that page.

<vectors paths=”57” subpaths=”57”/>

4.11.7 <text>

When a page of a PDF contains text, the <text> element will be present along with
two attributes. The characters attribute is a count of the number of characters/letters
present on that page - whether they are visible or invisible. If a page is a scan, but
contains “hidden text” as would be present if the scan had been through an OCR process,
then the hidden-text attribute will have a value of true, otherwise it will be false.

<text characters=”2781” hidden-text=”false”/>

4.11.8 <images>

When there are raster/bitmap images present in a PDF, each one will be listed under the
<images> element an element of type <image> which can contain a lot of attributes
with information about the image.

Some example images.
 <images>

<image bpc=”8” colorspace=”DeviceGray” columns=”648”
filter=”DCTDecode” height=”416” id=”32” rows=”1083” width=”249”
x=”158” xres=”187.373” xscale=”38.4259” y=”81” yres=”187.442”
yscale=”38.4118”/>

<image BlackIs1=”false” bpc=”1” columns=”63”
filter=”CCITTFaxDecode” height=”5” id=”21” invert=”false”
mask=”true” rows=”34” width=”8” x=”176” xres=”567”
xscale=”12.6984” y=”463” yres=”489.6” yscale=”14.7059”/>
</images>

The attributes that can appear on an <image> element include:

bpc bits per component (1, 2, 4, 8, 16)

colorspace colorspace of the image (RGB, CMYK, etc.)

columns how many pixels wide is the image

filter compression type (eg. DCTDecode==JPEG)

height actual height of the image (in PDF units)

id object ID of the image

rows how many pixels high is the image

width actual width of the image (in PDF units)

x horizontal location where the image is drawn (in PDF units)

xres horizontal resolution (dpi) of the image

xscale horizontal scaling factor of the image

y vertical location where the bottom of the image is (in PDF units)

yres vertical resolution (dpi) of the image

yscale vertical scaling factor of the image

4.11.9 <colors>

In addition to fonts, one of the most common things that users wish to know about their
PDFs is what colorspaces are used in the document. It is only Black & White, was RGB
used, etc. This section provides the list of colorspaces found on each page. If the
colorspace is a “complex” one, such as Indexed or DeviceN, then the details of that space
are present as child elements to that.

Here is an example of simple and complex colorspaces:
<colors>

<color base=”DeviceGray”/>
<color base=”DeviceRGB”/>
<color base=”DeviceCMYK” used=”CM”/>
<color base=”CalRGB”/>
<color base=”Indexed”>

<color alt="DeviceRGB" base="ICCBased" comps="3"
name="IEC 61966-2.1 - sRGB"/>

</color>
<color base=”DeviceN” alt=”DeviceCMYK”

simulation=”cmyk(0,0,0,1.0)”>
<color base=”Separation” alt=”DeviceGray”>Black
</color>

</color>
</colors>

For CMYK colors, PDFspy will report with channels are actually used via the “used” attribute. In the
example above, the DeviceCMYK colorspace used the Cyan and Magenta channels. The Indexed

colorspace had an associated sRGB ICC profile. The DeviceN colorspace was composed of a single
separation named “Black” which had an alternate colorspace of DeviceGray.

4.11.10 <opi>

In the prepress community, some users continue to use a technology called OPI (Open
Prepress Interface), which enables them to use low-resolution images in their documents
and have the higher resolution versions replaced at print/RIP time. If a document contains
such info, PDFspy will report the details of the OPI objects in this section.

Example:
<opi>

<opidict>
<_1.3 ColorType=”Process” Type=”OPI” Version=”1.3”>

<Size v0=”2100” v1=”2550”/>
<F F=”SERVER BETA:Film Scans:JONAH - JO:JONAH CAMP

A:JONAH CAMP A ELEMENTS:VEGGIExa B&W Comp only2.tif”
Type=”Filespec”/>

<Color v0=”0” v1=”0” v2=”0” v3=”1” v4=”Black”/>

<CropRect v0=”538” v1=”331” v2=”1831” v3=”2493”/>
<CropFixed v0=”538.003” v1=”331.418” v2=”1830.58”

v3=”2493.3”/>
<Position v0=”172.244” v1=”714.865” v2=”172.244”

v3=”1129.97” v4=”420.501” v5=”1129.97” v6=”420.501”
v7=”714.865”/>

<Resolution v0=”150” v1=”150”/>
<ImageType v0=”1” v1=”8”/>

</_1.3>
</opidict>

</opi>

4.11.11 <patterns>

PDF documents may contain patterns - either of the tiled variety (which are the ones
which consist of a set of elements repeated multiple times to fill an area) or shaded
(otherwise known as smooth shades or gradients). If either are present, PDFspy will
report on it via the <patterns> element with attributes for each type and the number
of occurrences of that type.

<patterns tiled=”1” shading=”96”/>

 4.11.12 <transparency>

Introduced to PDF in version 1.4, the ability to have objects be transaparent has caused a
lot of stir in the PDF world - both good and bad, esp for folks trying to output such
documents on older RIPs/printers. To be able to check if a document uses this feature,
PDFspy will report if there is any transparency present via the <transparency>
element with a count of how many objects use it.

<transparency objects=”2”/>

4.12 <colors>

As mentioned in section 4.10.9, each page of a document will contain a list of
colorspaces used on that page. However, sometimes you just want a list of ALL
colorspaces used in a document. The <colors> child element of <pdfattrs> is
where you will that. It has the same syntax as the page-based <colors> element, but is
a list of unique colorspaces for the entire document.

4.13 <fonts>

As mentioned in section 4.10.2, the list of fonts on each page is just the id of the font
object in the PDF, but doesn’t include the details of that font. Instead the <fonts> child
element of <pdfattrs> includes the details of each font used in the document.

Example:
<fonts>

<font embedded=”false” hasToUnicode=”false” id=”121”
name=”Times-Roman” subset=”false” type=”Type 1”/>

<font embedded=”false” hasToUnicode=”false” id=”122”
name=”Times-Bold” subset=”false” type=”Type 1”/>

<font embedded=”false” hasToUnicode=”false” id=”125”
name=”Helvetica” subset=”false” type=”Type 1”/>

<font embedded=”true” hasToUnicode=”false” id=”15”
name=”HelveticaNeue-Condensed” subset=”false” type=”Type 1C”/>

<font embedded=”true” hasToUnicode=”true” id=”16”
name=”ZapfDingbats” subset=”false” type=”Type 1C”/>
</fonts>

4.14 <shadings>

The <shadings> child element of <pdfattrs> contains one attribute, objects,
which is the number of shading objects in the PDF file.

5. Frequently Asked Questions

What is PDFspy?

PDFspy is a tool for extracting useful information out of a PDF file such as the used fonts
and colors. It can also report on a variety of other information including image attributes,
use of transparency, annotation and form field settings, etc.

Why do I need PDFspy?

1) You are building your own custom “PDF Preflight” tool and don’t wish to learn
the details of PDF.

2) You are building a PDF reporting tool, such as annotation or form field usage
3) You need a PDF validation tool and wish to use PDFspy’s validation feature
4) You want to extract text from a PDF file.

What type of PDF fles does PDFspy support?

PDFspy is compatible with all types of PDF files - from version 1.0 to the current 1.7.

What OS platforms is PDFspy available for?

PDFspy is available for Mac OS X, Windows, Linux and Solaris.

What are the system requirements to run PDFspy?

For Mac OS you will need an Apple Macintosh Intel-based computer running Mac OS
10.6 or later with at least 1GB of RAM.

For Windows you will need a Intel or AMD based computer running Windows XP or
later with at least 1GB of RAM.

Does PDFspy require Adobe Acrobat?

No.

Can I try PDFspy before purchasing it?

Yes, contact Apago for a trial serial number.

Where can I purchase PDFspy?

You can purchase PDFspy at Apago’s store @ http://www.apagostore.com

How do I report a bug or submit a suggestion?

Please send an email to support@apago.com or call +1 770 619-1884.

6. Legalese

Information in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of either Apago, Inc.

Use of PDFspy and its documentation are subject to the License Agreement enclosed in
the software package.

PDFspy is a trademark of Apago, Inc.

Adobe, Acrobat, InDesign, Photoshop, Illustrator and the Acrobat logo are trademarks of
Adobe Systems Incorporated or its subsidiaries and may be registered in certain
jurisdictions. All other trade names referenced herein are either trademarks or registered
trademarks of their respective companies.

