Copyright 2009. Izzentek Technologies Ltd.

Izzentek Licensor Manual v1.0

This manual describes in detail the process for securing your software with Izzentek
Licensor, with instructions on how to run and use each of the components of Izzentek
Licensor. For a high-level overview of the licensing process, please refer to the white paper
entitled The Izzentek Licensor Process.

Depending on what operating system you have, you will have either downloaded licensor-

windows-v1.0.zip for Windows, or licensor-unix-v1.0.tar.gz for UNIX. Decompress and
extract the contents of the archive into a folder of your choice. The archive contains nested
archives for each of the Izzentek Licensor modules. For each module, there is a version for
Java 5 and a version for Java 6. Use the archive for your target JRE version.

License Key Generator

The License Key Generator generates the cryptographic public-private key pair. The
following instructions detail how to run the License Key Generator on your operating
system.

On Unix/Linux:

1. Ensure you have acquired the proper package for your Java version (either Java 5
or Java 6). The rest of the instructions refer to the Java 5 archive name, but work
the exact same way with the Java 6 archive.

2. Copy the licensor-key-generator-java5-v1.0.tar.gz archive into the folder in which you

would like to install the software.

Decompress the archive by running: gunzip licensor-key-generator-java5-v1.0.tar.gz

Extract the files from the archive: tar -xvf licensor-key-generator-java5-v1.0.tar

Delete the archive once the files are extracted: rm licensor-key-generator-

javab-v1.0.tar

6. The Java runtime engine must be on your operating system path in order for the
command to run properly. If it is not set, set it now (e.g. your OS path should
include the bin folder of your JRE installation).

7. Execute the following command to run the License Key Generator (argument details
explained below): ./generate-keys.sh <privPass> <privStorePass> <privStoreFile>
<pubStoreFile>

8. As the output of the execution of the utility, you should find the public and private
keystores in the location that was specified in your arguments.

uikw

On Windows:

1. Ensure you have acquired the proper package for your Java version (either Java 5
or Java 6). The rest of the instructions refer to the Java 5 archive name, but work
the exact same way with the Java 6 archive.

2. Copy the licensor-generator-java5-v1.0.zip archive into the folder in which you would
like to install the software.

Copyright 2009. Izzentek Technologies Ltd.

Copyright 2009. Izzentek Technologies Ltd.

3. Extract the files from the archive using WinZip, WinRAR, or some other Windows
archiving utility.

4. Delete the archive onces the files are extracted.

5. The Java runtime engine must be on your operating system path in order for the
command to run properly. If it is not set, set it now (e.g. your OS path should
include the bin folder of your JRE installation).

6. Open a command window and execute the following command to run the License
Key Generator (argument details explained below): generate-keys -privPass
<privPass> -privStorePass <privStorePass> -privStoreFile <privStoreFile> -pubStoreFile
<pubStoreFile>

7. As the output of the execution of the utility, you should find the public and private
keystores in the location that was specified in your arguments.

The arguments are defined as follows:

<privPass> - The password that will be set for the private key. After the private key store is
created, this password will be required to access the private key in the store. This password
can only be at MOST 7 characters (or else you will get an IllegalKeySize exception).
<privStorePass> - The password that will be set for the private key store. After the private
key store is created, this password will be required to access the store itself.

<privStoreFile> - The file name for the private key store that is to be generated.
<pubStoreFile> - The file name for the public key store that is to be generated.

Example: generate-keys -privPass abcdefg -privStorePass gfedcba -privStoreFile
PrivateStore.bks -pubStoreFile PublicStore.bks

Once the public and private key stores have been created, they can then be used for the
License Signer utility and the License SDK.

License Signer

The License Signer generates digital signatures for end-user licenses. The following
instructions detail how to run the License Signer on your operating system.

On Unix/Linux:
1. Ensure you have acquired the proper package for your Java version (either Java 5

or Java 6). The rest of the instructions refer to the Java 5 archive name, but work
the exact same way with the Java 6 archive.

2. Copy the licensor-signer-java5-v1.0.tar.gz archive into the folder in which you would
like to install the software.

3. Decompress the archive by running: gunzip licensor-signer-java5-v1.0.tar.gz

4. Extract the files from the archive: tar -xvf licensor-signer-java5-v1.0.tar

5. Delete the archive once the files are extracted: rm licensor-signer-java5-v1.0.tar

6. The Java runtime engine must be on your operating system path in order for the

command to run properly. If it is not set, set it now (e.g. your OS path should
include the bin folder of your JRE installation).

7. Execute the following command to run the License Key Generator (argument details
explained below): ./sign-license.sh -privPass <privPass> -privStorePass

Copyright 2009. Izzentek Technologies Ltd.

Copyright 2009. Izzentek Technologies Ltd.

<privStorePass> -privStoreFile <privStoreFile> -signatureFile <signatureFile> -licenseFile
<licenseFile>

8. As the output of the execution of the utility, you should find the license signature in
the location that was specified in your arguments.

On Windows:

1. Ensure you have acquired the proper package for your Java version (either Java 5
or Java 6). The rest of the instructions refer to the Java 5 archive name, but work
the exact same way with the Java 6 archive.

2. Copy the licensor-signer-java5-v1.0.zip archive into the folder in which you would like
to install the software.

3. Extract the files from the archive using WinZip, WinRAR, or some other Windows

archiving utility.

Delete the archive onces the files are extracted.

The Java runtime engine must be on your operating system path in order for the

command to run properly. If it is not set, set it now (e.g. your OS path should

include the bin folder of your JRE installation).

6. Open a command window and execute the following command to run the License
Key Generator (argument details explained below): sign-license -privPass <privPass>
-privStorePass <privStorePass> -privStoreFile <privStoreFile> -signatureFile
<signatureFile> -licenseFile <licenseFile>

7. As the output of the execution of the utility, you should find the license signature in
the location that was specified in your arguments.

vuie

The arguments are defined as follows:

<privPass> - The password required to access the private key in the private key store.
<privStorePass> - The password required to access the private key store itself.
<privStoreFile> - The file name for the private key store.

<signatureFile> - The file name for the file to be created that will contain the digital
signature of the hash of the license file.

<licenseFile> - The file name of the license file for which the digital signature will be created.

Example: sign-license -privPass abcdefg -privStorePass gfedcba -privStoreFile PrivateStore.bks
-signatureFile license.hash -licenseFile license.xml

Once the license signature has been created, it can be distributed to the end user so that
they can use your software as fully-licensed.

License SDK

The License SDK is the Java library that you embed with your software so that your
software can load licenses. Using the License SDK, you will be able to determine if the
license is valid (there is a valid digital signature for the license), and whether or not the
license was tampered with. You will also be able to determine the values of various fields
specified in the license, such as the Name, Issue To, Features, and Constraints fields.

Copyright 2009. Izzentek Technologies Ltd.

Copyright 2009. Izzentek Technologies Ltd.

Deliverables
Your License SDK archive should be one of the following archives:

¢ licensor-sdk-java5-trial-v1.0.zip - Trial edition of Licensor SDK for Java 5 on
Windows

¢ licensor-sdk-java5-trial-v1.0.tar.gz - Trial edition of Licensor SDK on Java 5 on
UNIX

¢ licensor-sdk-java5-standard-v1.0.zip - Standard edition of Licensor SDK for
Java 5 on Windows

¢ licensor-sdk-java5-standard-v1.0.tar.gz - Standard edition of Licensor SDK on
Java 5 on UNIX

¢ licensor-sdk-java6-trial-v1.0.zip - Trial edition of Licensor SDK for Java 6 on
Windows

¢ licensor-sdk-java6-trial-v1.0.tar.gz - Trial edition of Licensor SDK on Java 6 on
UNIX

¢ licensor-sdk-java6-standard-v1.0.zip - Standard edition of Licensor SDK for
Java 6 on Windows

¢ licensor-sdk-java6-standard-v1.0.tar.gz - Standard edition of Licensor SDK on
Java 6 on UNIX

You will need to package and embed all the individual JARs that are in the License SDK
archive along with your own software. When your software is run by the end user, these
library JARs must be available on the classpath so that the License SDK can function
properly. The following JARs must be embedded with your software:

e bcprov-jdk5-141.jar (or bcprov-jdk6-141.jar if you are using the Java 6 version of
Licensor)

e commons-cli-1.1.jar
licensor-common.jar
licensor-sdk-standard.jar (or licensor-sdk-trial.jar if using Trial Edition)

As well, you should package the public keystore file that you generated using the License
Key Generator. The public keystore needs to be supplied to the SDK when your software is
run. The license and license signature can also be packaged along with the software, or
they can be supplied separately.

The Li Fil

The License File is an XML file that is described by a schema descriptor. Inside the License
SDK archive, you will find the License.xsd schema descriptor which determines the structure
of the license file. You will also find some sample license files that you can use as a
template for your own license file. The following is a description of the various fields within
the license file and what they are used for:

e <name>: This is the name of the license and could be the name of your software
product. This field is mandatory.

e <issued-to>: This is the end-user to which this license is issued. If you have a
single license for everybody, then this value could be something general like
"Licensee". This field is mandatory.

e <expiry>: This is the date at which this license expires and becomes invalid. The
date must be in the MM/dd/YYYY format (e.g. 12/31/2009 for December 315t,

Copyright 2009. Izzentek Technologies Ltd.

Copyright 2009. Izzentek Technologies Ltd.

2009). This field is optional (you should omit it if you do not want the license to
ever expire).

e <ip-constraint>: This field allows you to specify the IP Adddress(es) that the end
user's computer must be bound to in order for the license to be valid. This can be
useful in preventing users from transfering licenses and their signatures to other
users. This field is optional, and can be specified multiple times in order to specify
multiple, allowable IP addresses. If no IP constraint is specified, then the license is
valid for all IP addresses. The value of this field should be a string value
representing the IP address (e.g. 192.16.8.0.344).

o <feature>: This field allows you to specify features of your software. You can
deliver the same software deliverable to all your users, but restrict them from using
certain features of your software based on what features they have specified in their
license. For example, you can specify "Enterprise Edition" as a feature, and then
using the License SDK, you can, in your software code, check for the existence of
the feature in the user's license to see if your software should run in "Enterprise"
mode or not. This field is optional, and can be specified multiple times in order to
specify multiple features. The value of this field can be any string value.

When you sign a license using the License Signer, you are creating a separate file that
contains the digital signature of the hash of the license file.

ing th DK in Your Jav

The License SDK is very simple to use. You must first instantiate a
com.izzentek.licensor.sdk.Licensor object. This is the main object that you will use to load the
license and retrieve license details. Next, you must load the license by calling one of the
following methods on the Licensor object:

loadLicense(InputStream aLicenselnputStream, InputStream alLicenseSignaturelnputStream,
InputStream aPublicKeyStore)

or
loadLicense(File aLicenseFile, File aLicenseSignatureFile, File aPublicKeyStore)

If you know that you are loading the license file, the signature file, and the public keystore
file from the file system, then using the second method is the easiest. The first method
allows you to provide generic input streams from which you can load the license, signature,
and keystore. This provides more flexibility if you want to load the data in a different way
(e.g. via a network).

Note that the other methods on the Licensor object are not useful until you load the license.

When the license is loaded, the SDK validates the license at the same time. If the license
signature does not match the license, an exception is thrown. Similarly, if one of the license
constraints is not validated (e.g. the license is expired, or the host machine is not bound to
any IP address specified in the license), an exception is thrown. It is up to your application
code to handle the exception and prevent the execution of your software in a manner you
deem appropriate.

If the license is loaded and validated successfully, you can use the SDK to query the
features specified in the license (if any). Depending on what features are specified, you

Copyright 2009. Izzentek Technologies Ltd.

Copyright 2009. Izzentek Technologies Ltd.

may choose have your application restrict the user from using certain aspects of the
application.

The License SDK archive contains the JavaDoc API documentation (in licensor-sdk-
doc.jar) for the License SDK, which you can use to determine all the other details of how to
use the API.

Notes on Trial Version of SDK

The trial version of the SDK will identify license constraint violations by logging to the
System output stream, but it will not throw any exceptions when violations are found.

Copyright 2009. Izzentek Technologies Ltd.

	Izzentek Licensor Manual v1.0
	License Key Generator
	License Signer
	License SDK
	Deliverables
	The License File
	Using the SDK in Your Java Code
	Notes on Trial Version of SDK

