@+ Ephox

Ephox EditLive! for XML
Developer's Guide

Version 2.0

Ephox Corporation

Ephox EditLive! for XML Developer's Guide: Version 2.0

Ephox Corporation
Copyright © 2001-2004 Ephox Corporation. All rights reserved.

All rights reserved. This document forms part of Ephox products and is licensed under the same terms as the software.
The authors have made every effort in the preparation of this book to ensure the accuracy of the information. However,
the information contained in this book is sold without warranty, either express or implied. Ephox Corporation, nor its

dealers or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by

this book.

Table of Contents

1. INETOAUCTION .neviiiiiieiiieeieecte ettt e sre e e ste e e abe e s aa e e s saeesasaesssnaess 1
Ephox EditLive! for XML Product Informationc...ccecceeveenverieenseenneennne. 1
System REQUITEMENTSceeeviiiiiieieiieniiieeriteerete et e ene et e ereeseeeeeans 1

2. EditLive! for XML INStall GUIAEcceeviiiiviviriiieeiiiiieeeeiieeeeeeeeeeeeeiinreeeeeeeeessnans 4
General Server Install INSTIUCHIONSvvveeiieeeeiiiieeieeeeeieereeeeeeeeeeerreeeeeeeeen 4
Ephox EditLive! for XML JavaScript Installation Guidecccccccevevverrneennee 6
Ephox EditLive! for XML IIS Installation Guideccoceevirniinneeniennnennee. 7
Ephox EditLive! for XML Sample Java Server Installation with Apache
TOIMCAL ..eviiiiiiiiiiiiiiiii 11
Deploying to an External Web Serverccccceeeeciieeieeiieeeeeceeeececieeeeeane 12
EditLive! for XML Client INStallccccceeeiiiiieiiiiieieeeeeieecnereeeeeeeeeeenvnneeee 13

3. Getting STATTEdoeevvvieiiiieiriieeeectccre et re e e s sae e e s ae e e s ae e s saaae s 16
Licensing EditLive! for XMLccccooiiiiiiriieiienieeeeeeeeieeeee et 16
EditLive! for XIML OVEIVIEWccovvvvuvriereeeeiiiieinrieeeeeeeeeesssssreeeeeeesesssssssssesees 19

4. Integrating EditLive! for XIMLccoooiiiiiiiiiieiiciieeecciieeeeeveeesssree e seene e e 23
Basic INteZrationsccccccevveieeiiiiecieieeeee e eeeccrrere e e e e s eeeere e e e e e e s e eennneees 23
Default Values of EditLive! for XML Load-Time Propertiesccc.c....... 44
Retrieving Content from Ephox EditLive! for XMLcccccceccerviinienneennnenne 45
Submitting EditLive! for XML Content Directly Via HTTP POST 48
Encoding Content for Use with EditLive! for XMLccccceeveeeciveencreennnnnn. 53

5. VISUAL DESIZNET ...cecueriiiieciiieeiciteeeeeiteeeeeeteeesetre e e s ereeessaaaeeessnssaesssnsnsasannns 56
Using the Visual DeSIZNETcoevieiriiieiriiieiniienrieenrreessreesreeesieeeseeeesaeens 56

6. Cascading Style Sheet SUPPOTtcoeueriiiiiiiiieeeete e 68
Ephox EditLive! for XML and CSSccccceiiiiriiiiienieeteeeeecesee e 68
Using Ephox CSS Extensions with Custom Tagsccccceeevveeevieencneeennneen. 72

7. Deployment OptimiZationsceeeeevveeeieiiieeeeeiieeeeeeeiee e e eere e e e ecesee e e eeeeeeeenans 74
Minimizing an EditLive! for XML Deploymentccccceecverrvieinveennrueennne. 74
Optimizing EditLive! for XML Load Timescccceevueerrveerieeenieeenseessneens 75

8. Customizing EditLive! for XIMLcccccoiiiiiiiriiiieeeeetee et 80
Creating Custom Dictionaries for Ephox EditLive! for XML 80
Customizing the EditLive! for XML Interfacecccccecvveeerciveeeieccneeenennne 85
Custom Menu and Toolbar Items for EditLive! for XMLcccccceeeuueenneee. 108

9. Using JavaScript for Customizationc...ccceeceerrvueerniieenniieenneeesieeessneesnneens 118
Custom Properties Dialogs for EditLive! for XMLccccccerveriieniiennnennne. 118
Raising a JavaScript Event from Ephox EditLive! for XML 121

10. IMAge UPLoadoeeeiieeiiiiiieiiieeccitee et eeee e e s sre e e e s eare e e e s aaae s ssseaeaesans 125
Using HTTP for Image Upload in Ephox EditLive! for XML 125
ASP HTTP Image Upload Handler Scriptcccccceevueervieeniieinseeeniieennneens 129
ASP.NET HTTP Image Upload Handler Scriptcccccevveerveinieniceneennnen. 131

iv

Ephox EditLive! for XML Developer's

Guide
JSP HTTP Image Upload Handler Scriptcccecveeevvieervieeniieinieeenineennne 135
11. Using WebDAV with EditLive! for XMLccccciriiriiinieniereeeeeeeeeeeeee 141
Using WebDAV with EditLive! for XMLcccccovviriiiniieniinieneeneeeeeene 141
Enabling WebDAV 0n @ Web SEIVETcccveeevieeeiieeeieeeciieeeeeeeeeeeevee e 146
12. Internationalization SUPPOTLccccvieeiieiiiieieiiieeeceteee e e e e eee e e 151
Using Different Dictionaries with Ephox EditLive! for XML 151
Using Different Character Sets with EditLive! for XMLccceccveerueenee. 153
13. Ephox CSS Extensions for Custom Tagscccccceeveervernienneeneenseeneeeeeene 156
display AHTIDULE ...eeeeeuiiieiiieeieeeee e 156
ephox-end-icon AHTIDULEccccciiiiiiiiiieiiciiee e 157
ephox-end-label AHribULeccceovieieeiiiieieee e 157
ePhoX-1CoN ATTIDULEooueieieiieeee e 158
ephox-1abel AHTIDULEcccveieiiiiieieiiecceecece e 159
ephox-start-icon Aributeccccvveeeviieiiiieeieee e 159
ephox-start-label AtrIbULEccccveiiiiiiiiieiie e 160
14. Using EditLive! for XML Without The Visual Designerc..cccceeevveeennee 161
Creating XSLTs Without The Visual Designerc..cccceeveervveerrreernnreennne 161
Using Ephox XSLT EXteNSIONS ..cccceeeeeriuerrieniieenienieeseeeeeeseeseee e e 163
ephox:button Elementccccooviiiiiiniiiniiiniieeeeteeeeeee e 167
ephox:autoaddbuttons AHTIDULEcceeeeeevieeeiieeeiieceece e 168
ephox:displayas Attributecccceeeeeeiiieiiiiiieeeccree e 171
ephox:items and ephox:displayitems Attributesccccccevverveeniennnennee 174
ephox:readonly AHTIDULEcocoieiiiiiiiiieee e 177
15. InStantiation APIoooo et e e e e e e e e e e e e e e 179
EditLive! for XML JavaScript CONStructorccceeceeeeveeerveescreeessveennnnes 179
Visual Designer JavaScript CONnStructorc.ccccceeveeviveeeesiieeeseciineeeeennne. 180
addView Methodccceoviiiiiiiiieeeeceeece e 181
addViewASText Methodccoovvveiiiirieeiiiiiiireeeeeeeeeeeirrrereeeeeeseeenneneeees 183
addXSDASText Methodcooeeeuiiieeeiiieeeceee e e e e 185
SHOW METROQoiiniiieeieeceece e e va e e 186
showAsButton Methodcccccciviiiiiiiiii 187
AUutoSUDMIL PTOPEILY .oceeevvieeieiiieecccteeee et e e 189
BaseURL Property ...cccoeveeeiiiiiiiee 190
ConfigurationFile Propertycccccoeeeieeiienniineneeeeeceeeeeee e 192
ConfigurationText PrOPErtYcccceeeierierrieniiieneeeieerteeee et 193
COOKIE PTOPETLY ..uvvieeiieieiieeeiiieeeiiteeetteesteeeeteeesaeeensaeeessseessaeesssaeesnvaesnnnes 195
DebUGLEVE] PTOPEITY ..vveiiieeiieeieeiiieeccciteeeceiee e eeeiee e e e vre e e e eraee s e s eeeeeenns 196
Document Propertyeeeeeeiiiiieiieeeieeeeeeceeeceee e e e e e 198
DownloadDirectory PrOPETILYcccceevvieirveernieeenieeerieeesreesseeesneeesveessnnes 199
HideButtonICONURL PrOpertycccceeevueerienieernienieenieeeeeeeeeeeeeeeeeeenne 200
HideButtonTexXt PrOPEILYcccceeecieeeireeeiieeeiieesieeesieeenaeesssneeesssessssneennns 202
JREDOWNIOAdURL PTOPETLYcceieeiiiiieiiiieeiecirieecsieeeeeeieee e e evneeeeeeaeeas 203
LocalDeployment PrOPETtYcccccveeeeciieeeeeiiieeececieeeeeeeeeeseeeeeeeeenvneeens 205
LOCAlEe PTOPEILY oovvieiiiiiiiiiieiieeeiieeeiteeeite et e et essre e s saaeesssaeessaneesaneenans 206

Ephox EditLive! for XML Developer's

Guide
MinimumJREVErsion Propertyccccecceeeeeevieeeeniieeeenerieeeeeeeeeeeeeeeeen 208
OnInitComplete Propertycccccceceerierieinieniienieeieeseeeee et 209
OutputCharset PTOPETLYcooeeeiierrieriieerieeieesteeiee sttt 211
Preload PrOPEItYccccceecciieeeiieieiieeeieeesieeeeteeesaeeesereeesaaeeesaeesvaeesnveesnnnes 213
ShowButtonICONURL PrOPETLYcceeeeiuiieiieiieeeecireeeecireeeeeeeeeeeeeeee e 214
ShowButtonText PrOPertycccecceeeveieeriieerriieeeieeeieeeriteeseeesveeesvee s 216
ShowSystemRequirementSError Propertycccccceeceeevveeniveenneeensveennnne 217
USEWEDDAYV PrODETLY ...eeeeevieiiieiieiieeieesiteeieesite et site et saee s s et eene e 218
XSDASTEXE PrOPETLY .eveeeeeeeieieiei s 220
XSDURL PIOPETLY wevvvevererererereeeeereeerereeeeeeeeeremereeemesesesesmeessessmsmmmsmsmsssmsmmmmee 221
16. JavaScript RUntime APIoviiiiiiiiiereeee et neee e e e e e 223
GetCharCount FUNCHIONvvveiiiiiiiiiieeeeeceeeeeiireeee e e cesennnrreeeeeeeesessnnnnens 223
GetDocument FUNCHONcceeiiiieeeciiiiieieeeeeccecieeree e eeceeere e e e e e e nnees 224
GetSelectedText FUNCHONcccueeeiiiiiiniiiteeieeiee ettt 226
GetWordCount FUNCLIONccooovviiiiiiiiiiiiiieeeee 229
InsertHTMLAtCUrsor FUNCHONvvvvveieeiieieeiiieeeeeeeeeeeennrreeeeeeeeeeeennnnns 230
InsertHyperlinkAtCursor FUNCHONcccceerviierniiiennieenieeerieeeseeeeieeeene 232
ISValid FUNCHION .oeeiiiiiiiiiiiieeeec ettt eeeiareee e e e eeseaasraereeeeeesesasnssasenes 235
PostDocument FUNCHONccieiieeeeiiiiiiieeiieeeccirieeeeeeeeeecereeeee e e e e nnees 236
SetDocument FUNCHONccoooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 238
SetProperties FUNCHONc..ciiieiiiiiiieieec et e e ene e 240
SetXMLNodeValue FUNCHONcoovevvrieeieeiieieiiiireeeeeeeeeeeeinnreeeeeeeesesennnnns 242
UploadImages FUNCLIONccccveiriuieiiiieieiieeniteesieeesieeeseeesseneesseseessaneennns 244
17. XML Configuration APIc.ccoevieiiiiiiiiiieieiieeesieeeieeesieeesaeessneesssseesssneens 246
<editLive> Configuration Elementccccceeeevuieeeiieeniieeceieeecneeecieeeene 246
<document> Configuration Elementccceeevieiiiiiiieeiiiiieeeseiieeeeenne 248
<html> Configuration Elementccceeoviiiieiiiiiiiiiiiieeeccreeeeeieee e 249
<head> Configuration Elementcccccceevvuiiriiiieniiieiniieennieenieeeee e 250
<base> Configuration Elementc...ccoceriieniiiniienieniienieeeeneeeeeeeeeene 251
<link> Configuration Elementccccceeeviiiiiiieennieeeieereeeeee e 253
<style> Configuration Elementccccceeeiieeeiieeeiieeccieeeeeeeeeeevee e 256
<ephoxLicenses> Configuration Elementccccceeevieiiiiiiieenncieeeecennnen. 257
<license> Configuration Elementccocueervuiiniiiiinniieennieennieeneeennee. 258
<spellCheck> Configuration Elementccceecueeriieiniieeniieenieeeniieeenneen. 261
<htmlFilter> Configuration Elementc...ccocceeviiiniinniiniinniinienceen. 263
<wysiwygEditor> Configuration Elementcccccceveveiiiieencneecnneennnen. 266
<xmlEditor> Configuration Elementccccceouiiiiiiiiieiniiiiieeeecieeeeee 268
<sourceEditor> Configuration Elementccccceeveeiiiiieciiiieiieciieeeens 269
<wordImport> Configuration Elementccccceevveiriieinnieinieennseennneen. 271
<mediaSettings> Configuration Elementccccoeieriiiiniiniiiniennceneenne 272
<images> Configuration Elementcccccueeeviiiniiieniieeccieeeeeeceeeeeenn 273
<httpImageUpload> Configuration Elementcccccceevvevvieeeeciuneeenennnen. 275
<httpUploadData> Configuration Elementcccccoveerreciieeeecneeeeennnen. 277
<imageList> Configuration Elementcccccoevueeriieiniiieinnieinieeenieeenneens 279

vi

Ephox EditLive! for XML Developer's

Guide
<image> Configuration Elementccccoovuieriiiiiniiieeniiieiniieenieeeeeenee, 280
<webdav> Configuration Elementccocceeriiriiiniinnienienieneeeeeen. 283
<repository> Configuration Elementccecceeviiiniinniinninninniencenen. 285
<authentication> Configuration Elementcccccceeeeieiiiieennieeecneennnen. 289
<realm> Configuration Elementcccecoviiiiieiiiiiiiiiiieeeecieee e 290
<hyperlinks> Configuration Elementccceceevriieiniieinnieeniieenneeennen. 202
<hyperlinkList> Configuration Elementcccccoevueeriiiiiniieennieenneeennnen. 203
<hyperlink> Configuration Elementcccccecerviiriiiniiiniinniinienceneen. 204
<mailtoList> Configuration Elementccccccveeeieiniiieeniieencieeeeeeeee. 206
<mailtolink> Configuration Elementccccecoviiiiiiiieiineiiieeeecieeeeee, 297
<menuBar> Configuration Elementccccccoeeeuiiiiiiiiieieiiiiieececieeeeees 299
<menu> Configuration Elementcccccceevvuieriiieniiieiniiieeniieenieeeeeeeee 300
<menultem> Configuration Elementc.ccocceeviiniinniiniinniincneeeen. 302
<designerMenultem> Configuration Elementcccceeveivinniienncnnnnen. 307
<menultemGroup> Configuration Elementccccceevveeviiencreeccneennnen. 309
<menuSeparator> Configuration Elementccceceouveiiieiiieeincieiennnnnen. 311
<customMenultem> Configuration Elementcccoccueervieinviennineennneen. 313
<submenu> Configuration Elementc.cccccevvueeriieiniiieeniieenieeenieeenneens 317
<toolbars> EIEMENTccccuviiieeiiieeceieee et 319
<toolbar> Configuration Elementcccccceeviiieeiieeniieeniieeeeeeevee e 319
<toolbarButtonGroup> Elementccccccoeiiiieiiieiiieiiieeeeceeeeeeieee e 322
<toolbarSeparator> Configuration Elementc.cccoocueerviiinvienniueennneen. 323
<toolbarButton> ElIEIMENT ...cccuvvvvereeeiiiiiiiiieieeeeeeeeiiirreeeeeeeeeeenrrerereeeeeens 325
<toolbarComboBox> EI€MENLtccccvreeeeiiiieeceiieeeeceee et 328
<comboBoxItem> Configuration Elementcccccceveviereieenineencneennnen. 330
<customToolbarButton> Configuration Elementccccccceeerevuveennnnnnnn. 333
<customToolbarComboBox> Configuration Elementccccuuveennn..eee. 337
<customComboBoxItem> Configuration Elementcccccccevvuveervurennnnen. 339
<shortcutMenu> Configuration Elementccccecueeriiiinnieennieenneeennnen. 342
<shrtMenu> Configuration Elementcccceevuvereiiiriieennieeecieeeeeeeeen, 343
<shrtMenultem> Configuration Elementcccccceeeevieeiieeniieeecneennnen. 344
<shrtMenuSeparator> Configuration Elementccccceeevuvieiieiiineeenennns 348
<elementMenu> Configuration Elementcccooceeviiiiiiieennieenneeennen. 349
<elementMenultem> Configuration Elementccccceervvieniieenineennnen. 350
TNAEX ceeiiiieitiee ettt et eeetee e e e etee e e e tae e e e aaae e e e astae e e e nnaeeeeeraaeeeesraeeeanns 356

vii

List of Examples

3.1. EditLive! for XML Example LICENSEccccevrvuierrieeriieeriieeniieenieeesiveessveens 17
3.2. EditLive! for XML Configuration File with Example License 18
4.1. Complete Code for Basic JavaScript Integrationcccccceeeeveeeeieencrneeennen. 26
4.2. Configuring a Custom Item to Use the PostDocument Functionality 50
4.3. Using the PostDocument Functionality with a JavaScript Callback 51
4.4. URL Encoding With ASPcccciiiiiiiiiiiiiitecciecctecsee et esaeeesveeeseeeesavee s 53
4.5. URL Encoding with ASP.NET (C#) cccveeeviiiieiiieecieeeieeesreeescieeesveeesveeesaveens 54
4.6. URL Encoding With JSPcccciiiiiiiieiiieccieecteeere et vee e e e savee s 54
4.7. URL Encoding With PHPc..ooiiiiiiiiiieeectee ettt seee s esvee e 54
4.8. URL Encoding with ColdFusioncccccveiieciieeieciieeeceeeeeccveee e 55
4.9. URL Encoding with a Regular Expression in Perlccccceevviervieinvieennnneen. 55
6.1. Declaring a CSS Style for Rendering a Custom Tagccccceeveereeevceneennen. 73
8.1. Custom Color Chooser in a SUDIMENUcccvvveeeeeiiiiiiiiiieieeecceeerreeeeeeeeenn 104
8.2. Custom Color Chooser in a ToOIbarcccccccveveiiiiiiiiiiiiiiiiiiieeeeeeeeeeee, 105
8.3. Configuring a Custom Toolbar Buttonccceeeveeeeeiiiieeieccieeeceeieeeeene 109
8.4. Configuring a Custom Toolbar Combo BOXccccceeveeriierreinieniienienenee 109
8.5. Configuring a Custom Menu Itemc.c.cceceevieniiernienienieeeeeeeeeeeeeeee 110
8.6. Configuring a Custom Item to Insert HTML at the Cursorcccccueeuneen.. 111
8.7. Configuring a Custom Item to Insert a Hyperlink at the Cursor 112
8.8. Configuring a Custom Item to Use the raiseEvent Functionality 113
8.9. Configuring a Custom Item to Retrieve the Properties of a Tag 114
8.10. Configuring a Custom Item to Use the PostDocument Functionality 116
9.1. Configuring a Custom Item to Retrieve the Properties of a Tag 119
9.2. Using the SetProperties Function to Set Attributesccccceeeeveeecveennnenn. 120
10.1. HTTP Image Upload Absolute BASE URL Configuration Example 126
10.2. HTTP Image Upload Relative BASE URL Configuration Example 127
10.3. Example ASP.NET Image Upload Scriptcccceeveeerueeriieeniieeniieenieennns 132
12.1. Setting the Character Set to ASCII via the XML Declaration 154
15.1. JavaScript EditLive! Constructor Scripting Exampleccccceeveeeerneennne 180
15.2. JavaScriptt Visual Designer Constructor Scripting Example 181
15.3. addView Method Example SCriptingccccccceeeeeviieeiceciieeeeecieeeeeeceeeeeeane 182
15.4. addViewAsText Method Example Scriptingcccceevveereieeniieenieeenineennns 184
15.5. addXSDAsText Method Example Scriptingccoccceeveeveeneenneeenieeeneeenne. 186
15.6. show Method Example SCriptingc.ccceeceeevernieniieeniienseeeneeeeeeeeeeeeee 187
15.7. showAsButton Method Example Scriptingccccceeeeevveeeeeeiiveeenesinneeennne 188
15.8. AutoSubmit Property Example Scriptingcccccvvveeeeevieeeecciieeesecieeeeenne 190
15.9. BaseURL Property Example SCriptingcccecceeeeveerrvieeniieeniieenieeenieeenns 191
15.10. ConfigurationFile Property Example Scriptingccc.ccecceeeveerveenveenneenne. 192
15.11. ConfigurationText Property Example Scriptingccecceeeeerveenveennenne. 194
15.12. Cookie Property Example SCriptingcccceeceeeevieeeeiieeeiieesiieeeceeesveeenns 196

viii

Ephox EditLive! for XML Developer's

Guide
15.13. DebuglLevel Property Example Scriptingcccccceeceeveeeverneenseeneenseennne. 197
15.14. Document Property Example Scriptingcccceeveeervueenrieeniieenneeennveenns 199
15.15. DownloadDirectory Property Example Scriptingcccccoeceeveenviennenne 200
15.16. HideButtonIconURL Property Example Scriptingcccceeeeveeeeeeeniueennns 201
15.17. ShowButtonIconURL Property Example Scriptingc.ccccceeeeevveeeennns 202
15.18. JREDownloadURL Property Example Scriptingcccecceeevveervveennnnen. 204
15.19. LocalDeployment PrOPETtycccccevevveeiriieiniieeniiieenieeenieessreessneessnneens 206
15.20. Locale Property Example Scriptingccecceeeveerneenienneenienseeneeeieenne 207
15.21. MinimumJREVersion Property Example Scriptingccccceeeeveeennenn. 209
15.22. OnInitComplete Property JavaScript Callback Function Example 210
15.23. OnInitComplete Property Example Scriptingccccceeeeeeciveeeiccvveeennne 210
15.24. OutputCharset Property Example Scriptingcccecceeeevveenviernieeenieeennns 212
15.25. Preload JavaScript Callback FUnctioncccceeeeeevvveeniieennieenieeensneennns 213
15.26. Preload Property Example Scriptingcccccceeveeeveeniennenneennieeneeeeeenne 214
15.27. ShowButtonIconURL Property Example Scriptingcccceeevveeeiecvieeennnne 215
15.28. ShowButtonIconURL Property Example Scriptingccccccvveeeveciveeennee 216
15.29. ShowSystemRequirementsError Property Example Scripting 218
15.30. UseWebDAV Property Example Scriptingccocceeveeeveeneenseenieenneennne. 219
15.31. XSDAsText Property Scripting Examplecccccceveenvieniinniinieeniieenenne 220
15.32. XSDURL Property Example SCriptingcccccceeeeeeeevieeesiieeeeiieeeceeeeeneenn. 222
16.1. GetCharCount Runtime Function Examplecccccoeevieiiiciieeeiecineeennnne 223
16.2. GetDocument Runtime Function Examplecccccceevvveervieiniiennneennnneennne 225
16.3. GetSelectedText Runtime Function Examplecccccceevvieeniienniieenineennns 227
16.4. GetWordCount Runtime Function Examplecccceccveerviienniiiencneennnnenn. 229
16.5. InsertHTMLAtCursor Runtime Function Exampleccccceccveeeieeennneennns 231
16.6. InsertHyperlinkAtCursor Runtime Function Examplesccceevuveeennnee 233
16.7. IsValid Runtime Function Exampleccccooeieeiiiiiiiciiieeeccieeeceeeeeeee 235
16.8. POSTDocument Runtime Function Examplecccccceeveieiniieiniiennnneennne 237
16.9. SetDocument Runtime Function Exampleccccccceevveiviiienniiiennieennnnenn. 239
16.10. SetProperties Runtime Function Examplecccccceeceeeviinienneenneenuennne. 241
16.11. SetProperties Runtime Function Exampleccccoeeviiiiiiiiieeincineeennnne 243
16.12. UploadImages Runtime Function Exampleccccccoeiireviieeinciieeennnnns 244

ix

Chapter 1. Introduction
Ephox EditLive! for XML Product Information

EditLive! for XML is a forms-based authoring solution which allows for more effective
and intelligent capturing of business data. The EditLive! for XML solution is based on
industry standards such as XML, XML Schema and XML Stylesheets (XSLT).

The solution allows for the capture of business data as an XML file which complies
with a schema generated by the Visual Designer component. The Visual Designer
enables form designers to create a schema defining the data to be captured. Through
the Visual Designer "views" or templates which define the form layout can be
developed. EditLive! for XML combines the schema and views from the Visual
Designer to allow content contributors to create an XML document which complies
with the data model.

Highlights of Ephox EditLive! for XML:
« Empowers non-technical business users to create XML documents with an
intuitive forms-like interface.

« A powerful Visual Designer enables non-technical users to effortlessly create
templates and forms.

+ Intelligent form elements streamline the process of capturing and processing
business data.

« Validation based upon XML schema ensures the consistency of data
« Deployed and upgraded instantly over the Internet or intranets.
« XML open standards support enabling integration into any enterprise system.

» Cross-platform Windows, Macintosh OS X, Linux and Solaris clients.

System Requirements

This section outlines the system requirements needed to run Ephox EditLive! for
XML.

Client Requirements

Introduction

Microsoft Windows XP, 2000, NT 4.0, 98 or Me:

« Java 2 Platform, Standard Edition version 1.4 (installed automatically if required)
» Celeron 700-MHz or faster with at least 256MB of RAM

« Microsoft Internet Explorer 5.01 or later, Netscape Navigator 6.2 or greater, or
Opera 7.0 or later.

Apple Macintosh OS X:

« Mac OS X 10.1.1 Update (includes MAC OS X Java 2 Runtime Environment)

« Safari version 1.0 or greater, or Microsoft Internet Explorer 5.13* or greater
(included in MAC OS X updates).

. Note

A

*The Visual Designer requires Java 1.4 and therefore does not support
Microsoft Internet Explorer on Mac OS X. (Internet Explorer is
supported on the Microsoft Windows). Apple's Safari browser is
supported on Mac OS X.

Solaris 8 OE:

« Java 2 Platform, Standard Edition version 1.4 (installed automatically if required)

« Netscape Navigator 6.2 or greater
Linux:

« Java Runtime Environment version 1.4.2
« Celeron 700-MHz or faster with at least 256 MB of RAM

« Netscape Navigator 7.2

EditLive! Microsoft Word Import Feature:

Introduction

» Microsoft Windows XP, 2000, NT 4.0, 98 or Me

« Microsoft Office 2000 or greater installed on the client machine

Supported Application Servers

The EditLive! for XML JavaScript Edition will function on any Web server that HTML
content can be served from.

Chapter 2. EditLive! for XML Install
Guide

This chapter provides information on how to install EditLive! for XML.

General Server Install Instructions

The EditLive! for XML SDK is packaged with this documentation, example
integrations, image upload scripts and the EditLive! for XML application files allowing
EditLive! for XML to be run and redistributed for other applications. The example
integrations for EditLive! for XML are packaged within a folder which must be
deployed on a Web server to allow the integrations to be viewed.

The EditLive! for XML comes packaged as a . zip file or an installer package
depending on the edition of the EditLive! for XML SDK to be used. To install the
EditLive! for XML simply either unzip the package. Once the EditLive! for XML SDK
has been installed the Web components of the install can either be found within a
folder named webfolder which is a subfolder of the root folder. Placing this folder on
a Web server will allow these portions of the SDK to be accessed.

Deploying the EditLive! for XML Sample Integrations

The sample integrations for EditLive! for XML are packaged within the folder named
webfolder. This folder should be placed in a Web accessible directory in order to
access the EditLive! for XML sample integrations.

When placing the webfolder directory on a Web server it must be ensured that its
child directories are also Web accessible.

Once the webfolder directory has been placed on a Web server the EditLive! for XML
sample integrations can be accessed using a Web browser. The EditLive! for XML
sample integrations are available by accessing the URL
http://yourserver/webfolder/index.html where yourserver represents the host
name of the Web server EditLive! for XML has been installed on and webfoider is the
name of the virtual directory mapping to the EditLive! for XML webfolder directory
on the file system.

EditLive! for XML Evaluation License

EditLive! for XML is packaged with a license for the 1ocalhost host. This is an
untimed license that allows EditLive! for XML to be accessed via the 1ocalhost

4

EditLive! for XML Install Guide

domain. Developers can use this license while evaluating and developing with
EditLive! for XML. When deploying EditLive! for XML within a Web application the
license for the 1ocalhost domain should be replaced with a license for the relevant
Web application host.

For more information on the terms of EditLive! for XML licenses please see the
license. txt file packaged with EditLive! for XML. This file can be found at
SDK_INSTALL/license.txt where sDK INSTALL is the location that the EditLive! for
XML SDK has been installed to.

. Note

A

As EditLive! for XML is distributed with a license for the 1ocalhost
domain it is recommended that, for evaluation and development purposes,
EditLive! for XML is installed on a local Web server.

Redistributing EditLive! for XML

The files required to redistribute EditLive! for XML can be found in the

SDK INSTALL/webfolder/redistributables directory, where SDK INSTALL
represents the location that the EditLive! for XML SDK has been installed to. The
redistributables directory contains all the files required to deploy EditLive! for
XML to Web server for use within a Web application.

To deploy EditLive! for XML with another Web application copy the
redistributables directory, along with its subdirectories, into the relevant Web
application and ensure that the URL for the DownloadDirectory load-time
property, the EditLive! for XML JavaScript library include and the <spel1Check>
element jar attribute are correct for the Web application.

LI Note

The redistributables directory can be renamed, as can its
subdirectories, without affecting the functionality of EditLive! for XML
provided that the URLSs for the relevant properties, as listed above, are
changed in accordance with the changes made to the structure, location
and name of the redistributables directory and its contents.

Redistributing the Java Runtime Environment from a Local Server

Developers can download and then deploy a copy of the Java Runtime Environment
(JRE) from a local Web server. Redistributable JRE installers can be found on the Sun

EditLive! for XML Install Guide

Microsystems Java Web site [http://java.com/]. Once downloaded the JRE installer
should be placed in the redistributables/editlivexml directory of the EditLive!
for XML install or have their location specified via the JREDownloadURL property.

Packaged Image Upload Handler Scripts

Packaged with the EditLive! for XML SDK are a range of image upload handler scripts
which can be used to receive images uploaded by EditLive! for XML via HTTP. The
packaged image upload scripts can be found in the

SDK INSTALL/webfolder/uploadscripts/ directory.

For more information on how to use EditLive! for XML's integrated image upload
functionality and the packaged image upload scripts please see the documentation on
Using HTTP for Image Upload in EditLive! for XML.

See Also

« Minimizing an EditLive! for XML Deployment
« Using HTTP for Image Upload in Ephox EditLive! for XML

« Licensing EditLive! for XML

Ephox EditLive! for XML JavaScript Installation Guide

Introduction

This document outlines the steps needed to install the Web component of the Ephox
EditLive! for XML development suite.
i | Note

It is recommended that you run the Ephox EditLive! for XML JavaScript
SDK Install on a Web server on your local machine.

Installation Details

Other Install

Ephox EditLive! for XML SDK will be provided as a . zip file. The first step you need
to undertake is to un-zip the downloaded file. In order to do this, simply use an
un-archiving program such as WinZip [http://www.winzip.com], Power Archiver

6

http://java.com/
http://www.winzip.com
http://www.powerarchiver.com/

EditLive! for XML Install Guide

[http://www.powerarchiver.com/] or any other number of archiving utility tools
available. You should un-archive the file to an appropriate location, such as
C:\editlive\.Once you have unzipped the file, you need to set up Ephox EditLive!
for XML to run on your Web server, as per the instructions below.

Web Server Deployment

To deploy the EditLive! for XML SDK on your Web server simply copy the webfolder
directory, and all its subdirectories, from the location where they were un-archived to
a location from which they can be served on your Web server.

What to do when you have Finished the Installation Process

If you have followed this installation guide correctly, you can now start using Ephox
EditLive! for XML JavaScript Edition. Please direct your browser to the default.htm
document in the root directory of your Ephox EditLive! for XML folder. For example,
if you added a Web application called edit1ive to your local host Web server (on port
8080), to start viewing the documentation simply direct your Web browser to
http://localhost:8080/editlive . If you have deployed EditLive! for XML
JavaScript Edition on an external Web server then see Deploying to an External Web
Server. Please work through the Ephox EditLive! for XML documentation and
examples to familiarize yourselves with the product.

Ephox EditLive! for XML IIS Installation Guide

Introduction

This document outlines the steps needed to install the Web component of the Ephox
EditLive! for XML development suite.

Installation Details

To install Ephox EditLive! for XML on a Windows 2000 machine, running IIS 5.0:

1. Extract the . zip file that was downloaded for EditLive! for XML
2. Read Ephox EditLive! for XML SDK Setup Information and then click Next.

3. Read EditLive! for XML SDK License Information and then click I Agree if you
accept the terms of the license. I Agree must be clicked if you wish to continue
with the installation.

4. Select the destination directory where you would like Ephox EditLive! for XML to
be installed. To change the default directory, click Browse. Click Next when you

7

EditLive! for XML Install Guide

are happy with the directory information.

5. If you are happy with the installation process thus far, click Next to start
installing files.

6. Click Finish when all files have been installed.
The Ephox EditLive! for XML SDK has now been installed. The next step you need to

perform in order to get Ephox EditLive! for XML working on your IIS server, is to map
a virtual directory for Ephox EditLive! for XML on the server.

To map a virtual directory on your server you will need to follow the steps below:
1. On the Start menu, in Settings go to Control Panel. Now double-click on
Administrative Tools and then Internet Services Manager.

2. Expand the tree next to your Computer Name.

3. Select Default Web Site.

T Lk erreel Iindurenation Servies = 18] x|
Affion M h-g'ﬂﬂﬂﬁgﬁ"ﬂflﬂ
Trea | e IFeih LR
RS Joterret Informatnan Sevvos: Soiols € firmipublsoriphs
= M " e _compubsr SAdm C TN St T et s s
& Dl BTE S [TEP N ERTITOR E e
B m PR =g an s onreron bisspesderlrnads
= 2 Db TP Virtuanl Server TSt £ ywannei el ekl
Wbt Cilretoubipasbout
_@lPrinters CIPWINNTwebiprinkers
B gichal 2ca
LU
| ot mp
|6 bocaiek it e
[
|5 pagersor gt
L[]
CreT
! wenb g
| wrcnion. of

1. From the Action menu, select New > Virtual Directory.

EditLive! for XML Install Guide

| Foth
et

IR Tt T el Ly

= {urehpu’ e

fipmgran Hedcoreron filesieeshamlrsd:
Lteanneihelplisheip

L ilretpubiprebred
W e bipriniers

1. Follow the Virtual Directory Creation Wizard.

2. Inthe Alias field, on the Virtual Directory Dialog, enter editlive

[amen tow |0 = OR FHEE B »r 80|

b

Ties | Teath [sishs I
T T~ L]
= ' * o _computie LAWTRTErten U ret et adnr
E D=l PP Sl =il aies
= Dafmi ek Ste e Heesporenon fesisyseml resdc
B -de Defont SMTP Wimual Sereer wannitiFepUisheln
Cflret el

“Yigus rami gree e tusl deechony 3 shor nave, o shas for guick: isleisrcs

!!MW"'" Ty b ahins poi rard 42 us 1o g aevess 15 i Wl veual Sec iy, Usa e
|88 it nivan g Eomeenian il pou souid iy ranieg & seacion.

B
Bomoa, | o]

v [] e |

1. Inthe Directory field, on the Virtual Site Content Directory Dialog enter
the correct location. e.g. "C:\Program Files\Ephox EditLive! for
XML\SDK\webfolder" is the default location.

EditLive! for XML Install Guide

R Ftertost Normaslaon Sei v Cibepblpes
5 _compter 5 A AW T st e 8 mekar s
= Daf FIP Sk ' Armipubis
Delindt ‘smuls S0 L i Hesconenon flegertemlrd:
e Dok SMTP WUl Sereer 15Heip £ iianneihelplisheip
ebpets Cillregubipwebput:
s LW wvebiorniers
glum)
Ereb | yh Site Comont Directoy
,!w‘“'“ ‘min m P content pou want B puibic on e el e 7
(W lcsstat,
|8 e
|8 paggerror e e oo P e i Pl ook e condeni.
e 2))
[—— Dissciog:
;!'M\b ot Piigran Fleyisedines i wsbisils Beoprms i
I:_ﬂwrm.,

¢ Hack Mot faesd |

1. Leave the default selections on the Access Permissions dialog. The Read and
Run Scripts check boxes should be selected.

| amen tow | = Bl R E (B 00

e | et Tsima I
[Ftermeet Lnfurrmate 5o, E el o
= B = o _compotes TEA ik CAWRNT Traten T ek ar < Uik
= Daful FIP S . frmipndi
& [T R T MTADT iiprogren Flsrconenon filsy bl raadc
e Dbk SMTP WUl Soreer 5Hedp Liwanneirelnlishein
ot el Cillredpabipieton
=it LW il s
e R e — x|
Eheb ey Prmisvions
T e rrwe pnrions dh o s 1o o ke i vl desclery?
skt
[wc.or
|
[— Hlees b follcwsng
| pink

(8 wenrming ¢ ¥ Feed

I;smb ot R st fuch iz A5F)

B et fnsch 5461 spphoshons o i
™ whie
I~ Brosse

ik [Wen | paes |

1. Click Next followed by Finish to exit the wizard.
You will now have an edit1ive folder in the IIS snap-in.

To check the installation process has been completed correctly:

10

EditLive! for XML Install Guide

1. Open a Web browser.

2. Inthe IIS snap-in, in the webfolder directory you just created, right-click on
default.htm.

3. Select Browse.

T kel Infurmation Services Lim EI
doon Wew | = @ X@PARE|(S] e 0
. e e e
[N Frterreet Lfurrtaoe Ser e s
= e _compober] 2 s
ol Dbl FIF ke | product_nformalio
jl‘:lm'—n—bm L8] il o
* ks L0 b i, b
. T
i IFECangies
T M
. ElStaip
Wby
- Eh-w.-u
7 decs
F-) ereming
o]) pepboct,_glionrialion
= i Dabindc SMTP Yyt Sereed

You should see the Ephox EditLive! for XML Web component home page within the
Web browser.

You have now successfully installed Ephox EditLive! for XML and customized your
system correctly.

Once You Have Successfully Installed Ephox EditLive! for XML

You can now start using Ephox EditLive! for XML.

If you are using a Web server on your machine to serve the EditLive! for XML SDK
then:

To look at the examples, direct your browser to:
http://localhost/editliveWebfolder where editliveWebfolder isthe name of
the virtual directory in IIS.

For ease of future use, it is strongly recommended that you create a shortcut to the
above link, and then add that shortcut to the Ephox EditLive! for XML menu.

Ephox EditLive! for XML Sample Java Server Installation
with Apache Tomcat

Introduction

The aim of this article is to provide an installation guide on how to set-up Ephox

11

EditLive! for XML Install Guide

EditLive! for XML on a Tomcat [http://jakarta.apache.org/tomcat/] web server.
Tomcat has been chosen as it is a freely available and simple server, that clearly shows
the major steps needed to get Ephox EditLive! for XML up and running on your server
of choice.

Sample Tomcat Installation Guide

Firstly you must download Tomcat if you do not already have it. You can download it
from the Apache Jakarta Project [http://jakarta.apache.org/tomcat/].

Once Tomcat is installed correctly follow the below steps:

1. Stop your Tomcat web server.

2. Copy the webfolder directory from your Ephox EditLive! for XML installation
directory (i.e. where you un-archived the downloaded Ephox EditLive! for XML
ZIP file).

3. Paste the webfolder directory in TOMCAT HOME/webapps directory. Where
TOMCAT HOME represents the location of your Apache Tomcat install directory.

4. Rename the webfolder directory to something more meaningful, such as

editlivexml.

6. Ephox EditLive! for XML should now be ready to run on your server. Simply
direct your browser to http://yourserver. com: PORT/editlivexml (where
yourserver.comis the name of your Web server and porT is the port on the Web
server that Tomcat is running on). If your web server is running on your local
machine, on port 8080 for example, you would direct your browser to
http://localhost:8080/editlivexml .

If you have followed the above steps correctly, your Tomcat web server should be now
running the Ephox EditLive! for XML SDK.

Deploying to an External Web Server

Introduction

This document outlines how to deploy the Ephox EditLive! for XML SDK to a Web
server external to your local machine.

12

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/

EditLive! for XML Install Guide

Note

)

« In order to deploy to an external Web server you must have write
permissions for the directory on the Web server where you wish to
deploy the EditLive! for XML SDK.

« Ensure that you have the correct SDK for your Web server architecture.

Deployment Details

To deploy the EditLive! for XML SDK to an external Web server:

Install EditLive! for XML SDK on your local machine.

Locate the directory where you installed Ephox EditLive! for XML.

« For an IIS install the default location of the EditLive! for XML SDK is:
C:\Program Files\Ephox EditLive! for XML\IIS SDK

« A JavaScript install does not have a default location, you will find the required
files in the directory to which you unzipped the SDK.

Copy the webfolder subdirectory to the location where you wish to deploy it to on

the external Web server.

To access the EditLive! for XML SDK on the external Web server direct your
browser to:

http://your web server/location of editlive webfolder/
« Where your web server isthe name of the external Web server you have
deployed to and,

e location of editLive webfolderis thelocation to which the EditLive! for
XML SDK webfolder directory was copied to in the above steps

The EditLive! for XML SDK should now be ready to use from the external Web server.

EditLive! for XML Client Install

13

EditLive! for XML Install Guide

The EditLive! for XML applet is automatically deployed to users through Java's applet
deployment technology. This allows users to have EditLive! for XML seamlessly
installed when first running a page containing EditLive! for XML. Users are not
required to physically download and install EditLive! for XML themselves. This greatly
simplifies the process for the end user.

What is Required to Use EditLive! for XML

EditLive! for XML requires that the Java Runtime Environment (JRE) version 1.4 or
above is installed on the user's computer. If this is not detected then EditLive! for
XML will automatically deploy and install a version of the JRE. Through the
LocalDeployment property developers can specify where the JRE will be deployed
from. This property allows developers to specify if the JRE should be deployed from
the local server or downloaded over the Web from Sun Microsystems.

Installing the JRE from the Web Application Server

This is recommended when users can be expected to access EditLive! for XML via Web
applications on an intranet. In this case it will be much faster to download the JRE
from the local server than from Sun Microsystems' server. To deploy the JRE from the
relevant application server download an installer for the appropriate version of the
JRE from Sun Microsystems and place it on your Web server. Then set the
LocalDeployment property to t rue when instantiating EditLive! for XML and also
set the JREDownload URL property to map to the location that the JRE is available
from on your Web server .

Installing the JRE from a Sun Microsystems Server

This is recommended when users can be expected to access EditLive! for XML from a
machine external to the network on which EditLive! for XML is hosted (i.e accessing
EditLive! for XML over the Internet). In this case download times for the JRE can be
expected to be much slower than an install over an intranet. To deploy the JRE from a
Sun Microsystems' server set the LocalDeployment property to false when
instantiating EditLive! for XML.

Getting the Java Runtime Environment

Copies of Sun Microsystem's Java Runtime Environment can be found on the Java
Web site [http://java.com/]. Developers can download JRE installers from the Java
Web site for hosting on their servers for the purposes of deploying the JRE.

Installing the EditLive! for XML Client

EditLive! for XML is automatically deployed to users via the Java Applet technology

14

http://java.com/
http://java.com/

EditLive! for XML Install Guide

using signed JAR files. All the files necessary to achieve the deployment of EditLive!
for XML are included in the EditLive! for XML SDK and can easily be hosted on a Web
server.

When a page containing EditLive! for XML is first accessed by a user the client
machine downloads the files necessary to run EditLive! for XML and permanently
caches them on the client machine. When accessing the page in future the files
necessary to run EditLive! for XML will be loaded from the cache.

If the distribution of EditLive! for XML is updated on the server any updated files are
automatically deployed to the client upon their first access and cached.

Dealing with a java.lang.ClassNotFound Exception

If the Java plug-in cannot locate the editlivexml.jar thena
java.lang.ClassNotFound exception will be generated by the plug-in. There are two
probably causes for this:

» The path set via the DownloadDirectory property is incorrect. Ensure that the
DownloadDirectory property correctly provides a URL for the location of the
directory containing the EditLive! for XML source, including the
editlivexml.jar and editlivexml.js files.

« Ifit has been ensured that the path is valid for the deployment and the exception is
still occurring the editlivexml.jar may be corrupted. Try downloading the
EditLive! for XML SDK again from the Ephox Web site.

15

Chapter 3. Getting Started

This chapter provides information on how to get started with EditLive! for XML once
it has been deployed on a system.

Licensing EditLive! for XML

Introduction

This article details how to license EditLive! for XML for use within your application.
Ephox products can be licensed in multiple ways. This article outlines how to make
use of development and trial licenses and how to request and install new licenses. For
more information on licensing please contact Ephox. Licenses issued by Ephox for
EditLive! for XML are bound by a licensing agreement outlined in the 1icense.txt
file available in the EditLive! for XML SDK. All licenses are issued at the discretion of
Ephox.

Development and Trial Licenses

The EditLive! for XML SDK contains a license for the .ocaLHOST domain which can be
used for development purposes. In order to make use of the L.ocaLHOST development
license supplied with EditLive! for XML the EditLive! for XML applet must be
accessed on the LocALHOST domain. This license is neither time limited nor is it
limited in the number of times it can be activated. Should a development license be
required for a domain other than L.ocaraOST then please contact Ephox technical
support.

EditLive! for XML is also supplied with a 30-day trial license. This license is valid on

any domain for 30 days from the date that EditLive! for XML is first used on the client
machine.

Requesting a License

The licensing mechanism of EditLive! for XML applet is reliant on the domain from
which the EditLive! for XML applet is accessed. When requesting a license from Ephox
please ensure that the domain name is correct for the system you are licensing
EditLive! for XML for. For the purposes of licensing EditLive! for XML the domain is
considered to be everything between the trailing / of http:// and the next /,
excluding the port number. For example, if the EditLive! for XML applet was to be
accessed via the page http://www.yourserver.com:8080/editor/editlive.html
then the domain required for licensing would be www . yourserver. com.

16

Getting Started

Should EditLive! for XML be required to be licensed on multiple subdomains a license
which enables use on subdomains can be issued by Ephox on request. For instance, if
the EditLive! for XML applet is accessed from the URLs
http://www.yourserver.com/editor/editlive.html,
http://intranet.yourserver.com/editor/editlive.html and
http://yourserver.com/editor/editlive.html then a subdomain license for
yourserver.com would be able to function as a license for these domains.

Licenses issued by Ephox for EditLive! for XML are bound by a licensing agreement
outlined in the 1icense. txt file available in the EditLive! for XML SDK. All licenses
are issued at the discretion of Ephox.

Installing a License

Licenses issued by Ephox are supplied in a . 1ic file. This file will be attached to a
notification email sent in response to an EditLive! for XML purchase or request for a
new license. The license file contains the licensing information required by EditLive!
for XML and can be opened in a text editor. The EditLive! for XML Configuration Tool
can be used to install EditLive! for XML. The following steps detail how to add a
license to your configuration file using a text editor.

Example 3.1. EditLive! for XML Example License

The following is an example Ephox . 1ic license file. This is the evaluation license
provided with EditLive! for Java 3.0 for the LocALHOST domain.

<ephoxLicenses>

<license
accountID="BB56B8DD47EEF"
activationURL="http://www.ephox.com/elregister/el2/activate.asp"
domain="LOCALHOST"
expiration="NEVER"
forceActive="false"
key="6FFF-D85E-6B15-E0A6"
licensee="For Evaluation Only"
product="EditLive! for Java"
release="3.0"
seats=""
type="Evaluation License"

/>

</ephoxLicenses>

17

Getting Started

The content of the <license> element in the . 1ic file must be added to the EditLive!
for XML configuration file in the <ephoxLicenses> element.

Example 3.2. EditLive! for XML Configuration File with Example License

The following shows an (abbreviated) EditLive! for XML configuration file which
containing a license. This example is taken from the EditLive! for Java 3.0 sample
configuration file.

<editLive>
<document>

</document>
<ephoxLicenses>
<license
accountID="BB56B8DD47EF"
activationURL="http://www.ephox.com/elregister/el2/activate.asp"
domain="LOCALHOST"
expiration="NEVER"
forceActive="false"
key="6FFF-D85E-6B15-E0A6"
licensee="For Evaluation Only"
product="EditLive! for Java"
release="3.0"
seats=""
type="Evaluation License"
/>
</ephoxLicenses>
<htmlFilter ... />

</editLive>

Installing Multiple Licenses

EditLive! for XML can be used with multiple licenses. To use multiple licenses with
EditLive! for XML each license should be specified in a distinct <1icense> element
within the <ephoxLicenses> element of the EditLive! for XML configuration file.
EditLive! for XML will attempt to register with each license listed in the configuration
file in the order which they appear. All valid licenses listed will be activated and

therefore multiple limited seat licenses should not be used in the same configuration
file.

Timed Licenses

18

Getting Started

Upon request Ephox can issue a temporary, timed license for a specific domain for
development purposes. These licenses include the expiry date in the domain name.
For example, if the domain name for the timed license was www. YOURSERVER . COM and
the license expired on October 30th 2004 then the domain for the license key would
appear as WWi . YOURSERVER.COM20041030. It is important that the date is present in
the domain. Do not remove the eight (8) numbers on the end of the domain
representing the expiry date or the license will not function.

Using a Limited Seat License

Limited seat licenses require access to the Ephox server via the URL specified in the
activationURL attribute. Client machines being used with a limited seat license
require access to the Internet (specifically the Ephox Web page specified in the
activationURL) on port 80 in order to register.

See Also

e <ephoxLicenses> element

e <license> element

EditLive! for XML Overview

Introduction

EditLive! for XML is a forms-based authoring solution which allows for more effective
and intelligent capturing of business data. The EditLive! for XML solution is based on
XML standards. The solution allows for the capture of business data as an XML file
which complies with a customer defined schema which can be developed in the Visual
Designer.

The Visual Designer allows form designers to create a schema defining the layout and
types of data to be captured. Through the Visual Designer, templates or "views" which
define form layout can be developed for the data model. EditLive! for XML combines
the schema and views from the Visual Designer to allow content contributors to create
an XML document which complies with the schema.

As EditLive! for XML captures content as an XML document the output of EditLive!
for XML can easily be used as an input for XML-enabled enterprise systems. If
required, such systems can also easily be supplied with the schema generated by the
Visual Designer.

19

Getting Started

EditLive! for XML Components

The solution comprises of two in browser components; EditLive! for XML and the
Visual Designer.

EditLive! for XML allows contributors to efficiently provide data through a form-based
interface. The captured content is output as a XML document that complies with the
supplied schema. Within EditLive! for XML a XML document can be displayed via
several views which are similar to tabs in standard forms. This allows for the
presentation of data to end users in various ways.

The Visual Designer allows for the design of schemas and views for use with EditLive!
for XML. This allows form designers to designate the data which they wish to capture
and add constraints on the data to be captured. These constraints may include the
setting of data types in addition to value-range constraints. The Visual Designer also
enables form designers to construct views for use in EditLive! for XML. A view
controls the layout of the form as presented to users of EditLive! for XML. The Visual
Designer also allows for the embedding of Intelligent Form Elements in a view, these
elements include date and time pickers and action buttons which allow for elements to
be easily added or removed from a form.

EditLive! for XML Life-Cycle

The EditLive! for XML solution consists of two components, the EditLive! for XML
applet and the Visual Designer. To use EditLive! for XML most effectively it should be
implemented such that the output of the Visual Designer is used as input for the
EditLive! for XML applet. The Visual Designer provides both the schema and the
views to use with an XML document loaded into EditLive! for XML.

Once the schema and views have been generated with the Visual Designer they can be
used in EditLive! for XML in combination with an XML document that complies with
the schema. EditLive! for XML is loaded with the schema, views and XML document
allowing users to enter content. The content contributed via EditLive! for XML can
then be submitted via the browser to a server for processing. As EditLive! for XML
outputs an XML document the data captured by EditLive! for XML can easily be used
within XML-enabled enterprise applications.

Files Used by EditLive! for XML

EditLive! for XML makes use of three types of files to effectively capture content from
a user. The EditLive! for XML applet allows data to be captured as an XML document
through a form constructed with the Visual Designer. Each form consists of one or
more schemas and one or more views. The following provides a description of each file
type, how it is used within the EditLive! for XML solution and how it is created for use

20

Getting Started

with EditLive! for XML.

Data Model - XML Schema
Document (XSD)

Views - XML Style Sheets (XSL)

When used with EditLive! for XML an XSD
provides the structure for the resulting XML
document. In this way it specifies what content is
captured by EditLive! for XML and also places
constraints on the captured content. Such
constraints can be used for form validation and
ensure that a value is required, of a particular type
or within a particular range of values.

The Visual Designer should be used to create an
XSD for use with EditLive! for XML. The Visual
Designer presents form designers with a document
tree structure which they can add elements to. The
tree structure represents the structure of the XML
document provided by the XSD. The tree structure
allows designers to add elements to an EditLive! for
XML form and apply constraints to elements
within the data structure.

The elements can then be drag-and-dropped into a
view for use within EditLive! for XML. Once an
element has been placed within a view it becomes
accessible to content contribution interface of
EditLive! for XML.

EditLive! for XML allows multiple views to be used
with a single document. Each view is presented to
users as a tab in the EditLive! for XML and stored
as an XML style sheet (XSL). Through the Visual
Designer form designers can dictate which form
fields appear on which views for a single XML
document. Designers can also designate the type of
intelligent form element to be used with a
particular field. In conjunction with this designers
can add text to a view which gives users indications
on how a form is to be filled out.

Designers may also add action buttons to a view in
the Visual Designer. An action button is a button
which is embedded within an intelligent form in
EditLive! for XML and can be used to dynamically

21

Getting Started

add or remove sections from an intelligent form.

Data - XML Document (XML) EditLive! for XML captures content within an XML
document. The XML document which is generated
by EditLive! for XML complies with XSDs created
with the Visual Designer. Furthermore, during the
authoring process EditLive! for XML informs users
if their XML document is invalid. It does this
through real-time XML validation. Thus, users will
be informed of any invalid content as it is entered.

The XML document within EditLive! for XML is
rendered using the views created within the Visual
Designer. Each view is presented to users as a tab
within EditLive! for XML.

Summary

EditLive! for XML provides an architecture to easily capture content via a forms based
interface. Form designers can create forms for use with EditLive! for XML using the
Visual Designer. Each form created for use with EditLive! for XML includes an XML
schema and at least one view. The XML schema determines the structure of the
resulting XML document and any data constraints. Each view specifies how the data in
the XML file should be presented to users. Views can include intelligent form elements
and other user interface elements which enable users to easily contribute content via
EditLive! for XML.

Through EditLive! for XML users may contribute content via a forms based interface,
the content is then output as an XML document. While editing the form users are
presented with views of the data as created within the Visual Designer. The XML
document generated by EditLive! for XML complies with the XML schema created
with the Visual Designer. The XML document created by EditLive! for XML can be
used as an input to other enterprise systems, the relevant XSD may also easily be
supplied to these systems should it be required.

22

Chapter 4. Integrating EditLive! for
XML

This chapter provides examples of how to integrate the EditLive! for XML solution
into a Web application. The examples show how EditLive! for XML and the Visual
Designer can be easily integrated within forms using JavaScript.

Basic Integrations

Introduction

This section provides information on how to create an instance of EditLive! for XML
and the Visual Designer using the various editions of the EditLive! for XML SDK. Each
of these examples demonstrates how to integrate EditLive! for XML in the most basic
of ways so that it is running inside of a Web page.

EditLive! for XML Basic JavaScript Integration

This section of the document provides information on how to integrate EditLive! for
XML into a Web page using JavaScript.

The complete source code for this example can be found in the

INSTALL HOME/webfolder/examples/elxbasic/ folder where InSTALL HOME is the
location that the EditLive! for XML SDK has been installed. Also provided with this
example are the view (XSL), schema (XSD) and XML documents.

Getting Started

Required Skills

The following skills are required prior to working with this example:

 Basic client-side JavaScript

« Basic knowledge of XML, XML Schema and XSLT is recommended

Overview

In this sample EditLive! for XML is embedded into a Web page using JavaScript. In
the example, EditLive! for XML is loaded with an example XSL provided by the

23

Integrating EditLive! for XML

article.xs] file. EditLive! for XML is also provided with the article.xsd file to use
as an XSD. Finally, the applet is loaded with an XML document which has been URL
encoded and embedded within the Web page.

This example demonstrates how to perform the following with EditLive! for XML and
JavaScript:

« Embed an instance of EditLive! for XML in a Web page using JavaScript.

« Invoke methods and set parameters effecting the appearance of EditLive! for XML.
+ Load a view and a data model into EditLive! for XML.

e Load a document into EditLive! for XML.

Integrating EditLive! for XML

To embed EditLive! for XML within a Web page several steps are required. Each of
these steps is explained here and code samples are provided.

1. Include the editlivexml. s file

<script src="../../redistributables/editlivexml/editlivexml.js">
</script>

The editlivexml. s file contains the Ephox EditLive! JavaScript library. This
library provides the interface between the browser and the EditLive! for XML
.jar file (editlivexml.jar) which contains the code for the EditLive! for XML
applet. The JavaScript library file can be found in the

INSTALL HOME/redistributables/editlivexml directory of the EditLive! for
XML install.

2. Create a form to place an instance of EditLive! for XML in.

<form name="forml" method="POST">

3. Declare the EditLive! for XML JavaScript object.

<script language="JavaScript">
var editlivelInstance;

24

Integrating EditLive! for XML

4. Create a new instance of the EditLive! for XML object. When creating the
EditLive! for XML object the name of the form field for the applet in addition to
the width and height are declared. In this example the form field for the applet is
ELAppletl, the width of the applet is 700 pixels and the height is 600 pixels.

// Create a new EditLive! for XML instance with the name
// "ELAppletl", a height of 600 pixels and a width of 700 pixels.
editliveInstance = new EditLiveXML ("ELAppletl", 700, 600);

5. Set the path to the source files for EditLive! for XML. These can be found in the
INSTALL HOME/webfolder/redistributables/editlivexml directory.

// This sets a relative path to the directory where
// the EditLive! for XML redistributables can be
// found e.g. editlivexml.jar
editlivelInstance.setDownloadDirectory (
"../../redistributables/editlivexml") ;

6. Set the URL for the EditLive! for XML configuration file.

// This sets a relative or absolute path to the XML
// configuration file to use.
editlivelInstance.setConfigurationFile ("elconfig.xml") ;

7. Set the URL for the schema (XSD) to use with EditLive! for XML.

// This sets a relative or absolute path to the schema (XSD)
// to use for XML validation.
editliveInstance.setXSDURL ("article.xsd") ;

8. Set the name and the URL for the view (XSL) to use. The name used here will be
used within EditLive! for XML as the label for the tab representing the
article.xsl View.

// This sets a relative or absolute path to the stylesheet (XSL)
// to use to display the XML content.
editlivelInstance.addView ("Article", "article.xsl");

9. Set the content for the applet. The content must be a valid, URL encoded XML

25

Integrating EditLive! for XML

file. The string used in the following code is provided as an example, it is not a
complete XML document. For a complete version of the source code please see
the example code available with the EditLive! for XML SDK.

// This sets the initial content to be displayed within

// EditLive! for XML

editliveInstance.setDocument (
"$3C%3Fxml1%20version%3D%221.0%22%20...");

10. Display the EditLive! for XML applet and close the script and form elements.

// .show is the final call and instructs the JavaScript

// library (editlivexml.]js) to insert a new EditLive! for XML
// at the this location.

editliveInstance.show();

</script>

</form>

This section of code creates an instance of EditLive! for XML within the page and sets
properties which affect how EditLive! for XML will be presented within the page. For
more information on each of the methods here (the constructor,
setConfigurationFile, setDocument, addView, setXSDURL and show) see the
EditLive! for XML JavaScript Reference. After each of the properties have been set the
show method is called. This method causes the instance of EditLive! for XML to be
displayed in the Web page.

Example 4.1. Complete Code for Basic JavaScript Integration

The following code provides the complete code for the basic JavaScript integration of
EditLive! for XML detailed in this example.

<html>
<head>
<title>Sample EditLive! for XML JavaScript Integration</title>
<script src="../../redistributables/editlivexml/editlivexml.js">
</script>
</head>
<body>
<form name="forml" method="POST">
<script language="JavaScript">
var editlivelInstance;
// Create a new EditLive! for XML instance with the name

£
20

Integrating EditLive! for XML

// "ELAppletl", a height of 600 pixels and a width of 700 pixels.
editliveInstance = new EditLiveXML ("ELAppletl", 700, 600);
// This sets a relative path to the directory where
// the EditLive! for XML redistributables can be
// found e.g. editlivexml.jar
editlivelInstance.setDownloadDirectory("../../redistributables/editlivexml") ;
// This sets a relative or absolute path to the XML
// configuration file to use.
editliveInstance.setConfigurationFile ("elconfig.xml") ;
// This sets the initial content to be displayed within
// EditLive! for XML
// This sets a relative or absolute path to the schema (XSD)
// to use for XML validation.
editliveInstance.setXSDURL ("article.xsd") ;
// This sets a relative or absolute path to the stylesheet (XSL)
// to use to display the XML content.
editlivelInstance.addView ("Article", "article.xsl");
// This sets the initial content to be displayed within
// EditLive! for XML.
//NOTE: This document is incomplete
editliveInstance.setDocument ("$3C%3Fxml%20version%3D%221.0%22%20...");
// .show is the final call and instructs the JavaScript
// library (editlivexml.js) to insert a new EditLive! for XML
// at the this location.
editliveInstance.show () ;
</script>
</form>
</body>
</html>

See Also

o EditLive! for XML Instantiation API Reference

« Default Values of EditLive! for XML Load-Time Properties

Visual Designer Integration

This section of the document provides information on how to integrate the Visual
Designer into a Web page using JavaScript.

The complete source code for this example can be found in the

27

Integrating EditLive! for XML

/webfolder/examples/designerbasic/ folder where rnsTALL HOME is the location
that the EditLive! for XML SDK has been installed.

Getting Started

Required Skills

The following skills are required prior to working with this example:

» Basic client-side JavaScript

» Basic knowledge of XML Schemas and XSLT is recommended

Overview

In this sample the Visual Designer is embedded into a Web page using JavaScript. In
the example, the Visual Designer is loaded with several example XSLs provided within
the source of the page that the Visual Designer is embedded in. Also provided through
the page is a schema document which is used as the schema within the Visual
Designer.

This example demonstrates how to perform the following with the Visual Designer and
JavaScript:
« Embed an instance of the Visual Designer in a Web page using JavaScript.

« Invoke methods and set parameters affecting the appearance of the Visual
Designer.

» Load views and a data model into the Visual Designer.

Integrating the Visual Designer

To embed the Visual Designer within a Web page several steps are required. Each of
these steps is explained here and code samples are provided.

1. Include the Ephox Visual Designer JavaScriptLibrary file, visualdesigner.js.

<script src="../../redistributables/editlivexml/visualdesigner.js">
</script>

28

Integrating EditLive! for XML

The visualdesigner. s file contains the Ephox EditLive! JavaScript library.
This library provides the interface between the browser and the Visual Designer
.jar file (designer.jar) which contains the code for the Visual Designer applet.
The JavaScript library file can be found in the

INSTALL HOME/redistributables/editlivexml directory of the EditLive! for
XML SDK install.

2. Create a form to place an instance of the Visual Designer in.

<form name="forml" method="POST">

3. Declare the Visual Designer JavaScript object.

<script language="JavaScript">
var designerInstance;

4. Create a new instance of the Visual Designer object. When creating the Visual
Designer object the name of the form field for the applet in addition to the width
and height are declared. In this example the form field for the applet is
vDApplet1, the width of the applet is 700 pixels and the height is 600 pixels.

// Create a new Visual Designer instance with the name
// "VDAppletl", a height of 600 pixels and a width of 700 pixels.
designerInstance = new VisualDesigner ("VDAppletl", 700, 600);

5. Set the path to the source files for the Visual Designer. These can be found in the
INSTALL HOME/webfolder/redistributables/editlivexml directory.

// This sets a relative path to the directory where

// the EditLive! for XML redistributables can be

// found e.g. designer.jar

designerInstance.setDownloadDirectory (
"../../redistributables/editlivexml") ;

6. Set the URL for the Visual Designer configuration file.

// This sets a relative or absolute path to the XML
// configuration file to use.
designerInstance.setConfigurationFile ("designerconfig.xml") ;

29

Integrating EditLive! for XML

7. Set the schema (XSD) to be used with the Visual Designer.

// This sets the schema (XSD) to be edited with this instance of
// the Visual Designer
designerInstance.setXSDAsText ("$3C%3Fxml%20version%3D%221...");

. Note

A

The schema above is incomplete. When integrating the Visual
Designer the XSD used with the XSDAsText property must be a
complete XSD and URL encoded. To see the complete XSD used for
this example please see the Visual Designer Basic Integration packaged
with the SDK.

8. Add the views to be used within the Visual Designer. This section of code adds
three views for use with the Visual Designer. The views listed here are given the
names Company, Second View and Third View.

// This sets the views to be edited with this instance of the
// Visual Designer.
designerInstance.addViewAsText ("Company Details",

"$3C%3Fxml1%20version%3D%221.0%22%20encoding...");
designerInstance.addViewAsText ("Contact Details",

"$3C%3Fxml1%20version%3D%221.0%22%20encoding...");
designerInstance.addViewAsText ("Activity Details",

"$3C%3Fxml1%20version%3D%221.0%22%20encoding...");

. Note

A

The views above are incomplete. When integrating the Visual Designer
the XML Style Sheets (XSL) used with the addViewAsText property
must be complete XSLs and URL encoded. To see the complete views
used for this example please see the Visual Designer Basic Integration
packaged with the SDK.

9. Display the Visual Designer applet and close the script and form elements.

// .show is the final call and instructs the JavaScript

// library (visualdesigner.js) to insert a new EditLive! for XML
// at the this location.

designerInstance.show () ;

30

Integrating EditLive! for XML

</script>
</form>

This section of code creates an instance of the Visual Designer within the page and sets
properties which affect how the Visual Designer will be presented within the page. For
more information on each of the methods here (the constructor,
setConfigurationFile, addViewAsText, setXSDAsText and show) see the
EditLive! for XML SDK JavaScript Reference. After each of the properties have been
set the show method is called. This method causes the instance of the Visual Designer
to be displayed in the Web page.

EditLive! for XML Life-Cycle Example Integration

Overview

This example demonstrates the EditLive! for XML life-cycle. The example first loads
the Visual Designer in order to either create new XSLs and an XSD to use with
EditLive! for XML or to edit an existing example from the EditLive! for XML sample
forms package. After designing both the XSLs and XSD to use with EditLive! for XML
content from the Visual Designer can be submitted to a page containing EditLive! for
XML. EditLive! for XML allows for the authoring of an XML document which is
presented using the XSLs and validated using the XSD designed in the Visual
Designer. The XML document can then be submitted to a page which displays the
document.

Required Skills

The following skills are required to work with this example:

» Basic client-side JavaScript

« Developing Web-based forms in HTML and Active Server Pages (ASP) or Java
Server Pages (JSP)

. Note

A

This example provides example code for use with both ASP (VB Script) and
JSP (Java).

31

Integrating EditLive! for XML

Example Files

The source code for this example can be found in the
webfolder/examples/lifecycle directory. The source for the ASP scripting example
is in the asp subdirectory and the source for the JSP scripting example is in the jsp
subdirectory.

The each example contains the following scripting files:

« Default page - default.asp for ASP and default.7sp for JSP. This is the starting
file for the example and allows for the selection of an example form to be used with
EditLive! for XML. The selection made here is submitted to the designer page.

» Designer page - designer.asp for ASP and designer.jsp for JSP. The default
page submits the form selection choice to this page which loads the form selection
into the Visual Designer for editing. The content of the Visual Designer can then be
submitted to the EditLive! for XML page.

« EditLive! for XML page - e1x.asp for ASP and e1x. jsp for JSP. The designer page
submits the XSLs and XSDs to this page which loads the content from the Visual
Designer into EditLive! for XML for XML authoring. The content of EditLive! for
XML can then be submitted to the view page for output.

» View page - view.asp for ASP and view. jsp for JSP. The EditLive! for XML page
submits the XML document to this page which outputs it directly to the browser.

Form Selection - Default Page

The first page of the example provides a basic interface to select an existing form or to
create a new form. The exist forms used here are packaged with EditLive! for XML as
an example form package. The source files for these forms can be found in the
webfolder/forms folder of your EditLive! for XML SDK install.

1. Create the page

<html>

<head>

<title>EditLive! for XML - Life Cycle Example</title>

<link type="text/css" rel="stylesheet" href="stylesheet.css">
</head>

<body>
<hl>Life Cycle Example</hl>

32

Integrating EditLive! for XML

2. Create a form to allow the submission of the form selection. This form submits its
content to the designer page. For ASP the designer page is designer.asp and for
JSP the designer page is designer.jsp.

VBScript:

<form name="forml" action="designer.asp" method="GET">

JSP Scripting:

<form name="forml" action="designer.jsp" method="GET">

3. Provide the selection options and finish the page.

<p>Select one of the example forms below to get started.

These forms are packaged with EditLive! for XML in the <i>forms</i>
directory.</p>
<p><select name="example">
<option value="Contact Details">Contact Details</option>
<option value="Expenses">Expenses</option>
<option value="Invoice">Invoice</option>
<option value="Leave Application">Leave Application</option>
<option value="Partner Application">Partner Application</option>
<option value="Quotation">Quotation</option>
<option value="Sales Report">Sales Report</option>
<option value="Support Issue">Support Issue</option>
<option value="Vehicle Booking">Vehicle Booking</option>
<option value="Create New Form">Create New Form</option>
</select>
<input type="submit" value="Select">
</p>
</form>
</body>
</html>

Designer Page

The designer page loads the relevant example form XSLs and XSD and creates an
instance of the Visual Designer for editing.

33

Integrating EditLive! for XML

1. Start page and import any required packages.

VBScript:

<%@ language="VBScript" %>
<html>
<head>
<title>EditLive! for XML - Visual Designer</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link type="text/css" rel="stylesheet" href="stylesheet.css">
</head>
<body>
<hl>Visual Designer</hl>
<p>Edit the form and its data structure in the Visual Designer
and submit to EditLive! for XML.</p>

JSP Scripting:

<%@page import="java.util.*"%>
<%@page import="java.io.*"%>
<%@page import="java.net.*"%>
<html>
<head>
<title>EditLive! for XML - Visual Designer</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link type="text/css" rel="stylesheet" href="stylesheet.css"/>
</head>
<body>
<hl>Visual Designer</hl>
<p>Edit the form and its data structure in the Visual Designer and
submit to EditLive! for XML.</p>

2. Create a method to read data files from the Web application file system
(getFileContents). This method accepts two parameters, the file name and the
subdirectory the file is contained in.

VBScript:

AN
o°

'This function reads a given file from the given forms subdirectory
Function getFileContents (directory, fileName)

Const ForReading = 1

Dim fso, f, path, content

'Construct the path to the file on the server

34

Integrating EditLive! for XML

path = Server.MapPath("../../../forms/" & directory) & "\" & fileName
Set fso = Server.CreateObject ("Scripting.FileSystemObject")
Set f = fso.0penTextFile (path, ForReading)
'Read the file content
content = f.ReadAll
'Close and release the file
f.Close
Set f=Nothing
Set fso=Nothing
'return the file content
getFileContents = content
End Function
>

[

JSP Scripting:

AN
o

/*
This method retrieves the content of a given file from a given subdirectory
=/
public String getFileContents (String directory, String fileName) ({
try {
//Construct the path to the file on the server.
//Note that this path is resolved relative to this application's
//root directory
String path = getServletContext () .getRealPath ("forms" + File.separator
+ directory + File.separator + fileName) ;
BufferedReader in = new BufferedReader (
new InputStreamReader (new FileInputStream(path)));
StringBuffer buf = new StringBuffer();
//Read the file into a variable one line at a time
String line = in.readLine();
while (line != null) {
buf.append(line) ;
buf.append ("\n") ;
line = in.readLine();

in.close () ;
//Return the content of the file
return buf.toString() ;

} catch (Exception e) {
e.printStackTrace () ;
return "";

35

Integrating EditLive! for XML

o
\

3. Declare and initialize global variables for the page and process the request to

determine which form has been selected.

VBScript:

AN
o°

Dim xsd

Dim views (6)

Dim viewNames (6)
Dim viewCount
Dim createNew

createNew = false

Dim example

If Request.QueryString ("example") .Count > 0 Then
example = Request.QueryString ("example") .Item(1)

End If

JSP Scripting:

AN
o\

String xsd = "";

List views = new ArrayList();
List viewNames = new ArrayList();
boolean createNew = false;

String example = request.getParameter ("example");

4. Read the requested data files into variables. The getFileContents method is used

to retrieve the content of the requested files.

A

Note

An abbreviated example is shown here. For the complete series of
If-Then-Else statements see the source code.

36

Integrating EditLive! for XML

VBScript:

The ASP script places the content of the XSD file in the xsd variable and the
content of each XSL forms an entry in the views array, finally, the label for each
XSLis declared in the viewNames array.

'This series of if statements read the XSD and XSLs for the
'requested form into variables for outputting later.

'The XSD is read into the xsd variable

'Each XSL is assigned a name in the viewNames array and
'the content of the XSL is placed in the views array

If example = "Contact Details" Then
'Read the files for the Contact Details form
xsd = getFileContents ("contactdetails", "contactdetails.xsd")
viewNames (1) = "Company"
views (1) = getFileContents ("contactdetails", "company.xsl")
viewNames (2) = "Contact"
views (2) = getFileContents ("contactdetails", "contact.xsl")
viewNames (3) = "Activity"
views (3) = getFileContents ("contactdetails", "activity.xsl")
viewCount = 3

ElseIf example "Expenses" Then

ElseIf example "Vehicle Booking" Then

'Read the files for the Vehicle Booking form

xsd = getFileContents ("vehiclebooking", "vehiclebooking.xsd")

viewCount = 1

viewNames (1) = "Booking"

views (1) = getFileContents ("vehiclebooking", "booking.xsl")
ElseIf example = "Create New Form" Then

'Set the create new form flag

createNew = true
End If

JSP Scripting:

The JSP script places the content of the XSD file in the xsd string variable and the

37

Integrating EditLive! for XML

content of each XSL forms an entry in the views List, finally, the label for each
XSL is declared in the viewNames list. The lists are instances of the
java.util.ArrayList class.

/*
This series of if statements read the XSD and XSLs for the
requested form into variables for outputting later.

The XSD is read into the xsd variable
Each XSL is assigned a name in the viewNames list and
the content of the XSL is placed in the views list
=4
if (example.equals ("Contact Details")) {
//Read the files for the Contact Details form

xsd = getFileContents ("contactdetails", "contactdetails.xsd");

viewNames.add ("Company") ;

views.add (getFileContents ("contactdetails", "company.xsl"));
viewNames.add ("Contact") ;
views.add (getFileContents ("contactdetails", "contact.xsl"));
viewNames.add ("Activity") ;
views.add (getFileContents ("contactdetails", "activity.xsl"));
}
else if (example.equals ("Vehicle Booking")) {

//Read the files for the Vehicle Booking form
xsd = getFileContents ("vehiclebooking", "vehiclebooking.xsd") ;

viewNames.add ("Booking") ;

views.add (getFileContents ("vehiclebooking", "booking.xsl"));
} else if (example.equals ("Create New Form")) {

//Set the create a new form flag

createNew = true;

5. Create a form which submits content to the page with EditLive! for XML
embedded in it.

VBScript:

<form action="elx.asp" method="POST" name="forml">

38

Integrating EditLive! for XML

JSP Scripting:

<form action="elx.]jsp" method="POST" name="forml">

6. Create a form containing the Visual Designer. The Visual Designer is created and
has its properties set using JavaScript.

<script src="../../../redistributables/editlivexml/visualdesigner.js" languages"JavaScrip
</script>
<script language="JavaScript">
Ll==
var designerInstance;
// Create a new Visual Designer instance with the name
// "VDAppletl", a height of 700 pixels and a width of 800 pixels.
designerInstance = new VisualDesigner ("VDAppletl", 1000, 600);
// This sets a relative path to the directory where
// the EditLive! for XML redistributables can be
// found e.g. designer.jar
designerInstance.setDebugLevel ("debug") ;
designerInstance.setDownloadDirectory("../../../redistributables/editlivexml!) ;
// Set the output character set to ASCII to ensure that character
// encoding is correct
designerInstance.setOutputCharset ("ASCII") ;
// This sets a relative or absolute path to the XML
// configuration file to use.
designerInstance.setConfigurationFile ("designerconfig.xml") ;

7. Check the createNew flag and load the requested XSD into the Visual Designer if
the createNew flag has not been set. Note the use of the server-side URL
encoding.

VBScript:

AN
o°

If Not createNew Then

o°
\2

// This sets the schema (XSD) to be edited with this instance of
// the Visual Designer
designerInstance.setXSDAsText ("<%= Server.URLEncode (xsd) $%>");

39

Integrating EditLive! for XML

JSP Scripting:

AN
o\

-

f (!createNew) {

o\
\

// This sets the schema (XSD) to be edited with this instance of
// the Visual Designer
designerInstance.setXSDAsText ("<% out.print (URLEncoder.encode (xsd)); %$>");

AN
o

o0
\

8. Check the createNew flag and load the requested XSLs into the Visual Designer if
the createNew flag has not been set. The XSLs and their associated names are
loaded into the Visual Designer within a for loop. Note the use of the server-side
URL encoding.

VBScript:

// This sets the views to be edited with this instance of the
// Visual Designer.
<%
If Not createNew Then
Dim i
For 1 = 1 to viewCount
Response.Write "designerInstance.addViewAsText ("""

& Server.URLEncode (viewNames (i)) & """, """
& Server.URLEncode (views(i)) & """);"
Next
End If
%>
JSP Scripting:

// This sets the views to be edited with this instance of the
// Visual Designer.
<%
if (!createNew) {

Iterator namesIter = viewNames.iterator () ;

Iterator viewsIter = views.iterator();

while (namesIter.hasNext () && viewsIter.hasNext ()) {

out.println ("designerInstance.addViewAsText (\"" +

URLEncoder.encode ((String) namesIter.next ()) + "\", \"" +

40

Integrating EditLive! for XML

URLEncoder.encode ((String)viewsIter.next ()) + "\");");

}

00 —
Vv

9. Show the instance of the Visual Designer and finish the page. Buttons are
included to allow the submission of content to the page containing EditLive! for
XML and allowing navigation back to the form selection page.

// .show is the final call and instructs the JavaScript
// library (visualdesigner.js) to insert a new EditLive! for XML
// at the this location.
designerInstance.show () ;
-——>
</script>
<p>
<input type="submit" value="View in ELX">
<input type="button" value="Form Type Selection"
onclick="location.href="default.jsp';">
</p>
</form>
</body>
</html>

EditLive! for XML Page

The EditLive! for XML page contains an instance of EditLive! for XML which is
instantiated containing data from the request submitted by the designer page.

1. Import any required packages

VBScript:

<%@ language="VBScript" %>

JSP Scripting:

<%@page import="java.util.*"%>
<%@page import="java.net.*"%$

41

Integrating EditLive! for XML

2. Start the HTML page

<html>

<head>

<title>EditLive! for XML</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link type="text/css" rel="stylesheet" href="stylesheet.css"/>

</head>

<body>

<hl>EditLive! for XML</hl>
<p>EditLive! for XML combines the style sheet and data structure
generated in the Visual Designer to create an electronic form
for authoring XML. The style sheet from the Visual Designer
is used to present the underlying XML document while the data structure
is used to ensure the validity of the XML document. This page also
allows the content of EditLive! for XML to be submitted to the server
for viewing.</p>

3. Create an instance of EditLive! for XML using JavaScript.

Ll==
** First we need to include a link to the editlivexml.js file. This file conta
** code required to handle loading EditLive! for XML across multiple browsers
-—>
<script src="../../../redistributables/editlivexml/editlivexml.js"></script>
<form action="view.asp" method="POST">
<script language="JavaScript">
Ll==
/**
** This section of code creates the EditLive! for XML
** instance and sets all of the relevant
** configuration information.

*/

// Create a new EditLive! for XML instance with the name
// "elx", a height of 650 pixels and a width of 700 pixels.
var elxl = new EditLiveXML ("elx", 850, 600);

// This sets a relative path to the directory where the
// EditLive! for XML redistributables can be found e.g. editlivexml.jar
elxl.setDownloadDirectory("../../../redistributables/editlivexml") ;

// This sets a relative or absolute path to the XML configuration file to us
elxl.setConfigurationFile ("elxconfig.xml") ;

ins all of
and platfor

42

Integrating EditLive! for XML

4. Process the request variables to retrieve and set the XSD and the XSLs. Note the
use of the server-side URL encoding methods.

VBScript:

// This sets a relative or absolute path to the schema (XSD) to use for XML validation.
elxl.addXSDAsText ("<%= Server.URLEncode (Request.Form("VDAppletl xsd").Item(1l)) |3%>");

// This sets a relative or absolute path to the stylesheet (XSL) to use to display the XM
<%

Dim i
For 1 = 1 to Request.Form("VDAppletl xslt") .Count
Response.Write "elxl.addViewAsText (""" &

Server.URLEncode (Request.Form ("VDAppletl viewName").Item(i)) &
mww,omnnog Server.URLEncode (Request.Form ("VDAppletl xslt").Item(i)) &
my L

Next
%>

JSP Script:

// This sets a relative or absolute path to the schema (XSD) to use for XML validation.
elxl.addXSDAsText ("<% out.print (URLEncoder.encode (request.getParameter ("VDAppletl xsd")))

// This sets a relative or absolute path to the stylesheet (XSL)
// to use to display the XML content.
<%

String[] names request.getParameterValues ("VDAppletl viewName");
String[] views = request.getParameterValues ("VDAppletl xslt");
if (names != null && views != null) {
for (int i = 0; i1 < names.length && 1 < views.length; i++) {
out.println("elxl.addViewAsText (\"" +
URLEncoder.encode (names[1]) + "\", \"" +
URLEncoder.encode (views[1]) + "\");");

}

o
\

5. Show the instance of EditLive! for XML and finish the page. Buttons are included
to allow the submission of content to the page allowing the XML content to be
viewed and allowing navigation back to the form selection page.

// .show is the final call and instructs the JavaScript library (editlivexml|js)
// to insert a new EditLive! for XML

43

Integrating EditLive! for XML

// at the this location.
elxl.show () ;

-——>

</script>

<p>

<input type="submit" value="View XML">

<input type="button" value="Form Type Selection"
onclick="location.href="'default.asp';">

</p>

</form>
</body>
</html>

View Page

This page allows the submitted content from EditLive! for XML to be viewed.

1. Import any required packages and get the submitted XML document from the
request.

VBScript:

<%@ language="VBScript" %>

<%

Response.Write (Request.Form("elx"))
$>

JSP Scripting:

<%@page import="java.net.*"%>

<%

out.println (request.getParameter ("elx")) ;
$>

Default Values of EditLive! for XML Load-Time Properties

The following provides a list of the deaults for the load-time properties of EditLive! for

44

Integrating EditLive! for XML

XML SDKs.

Table 4.1. Load-Time Properties Default Values

Property Name Default Value Valid For
AutoSubmit true All SDKs
DebugLevel info All SDKs
LocalDeployment false All SDKs
ShowSystemRequirementsError (true All SDKs
UseWebDAV false All SDKs

Retrieving Content from Ephox EditLive! for XML

Introduction

There are two methods with which content can be retrieved from an instance of the
EditLive! for XML applet:

« POSTed as a form field with a form submit via the JavaScript onsubmit function
(automatic submission); or

« Through the JavaScript API functions at runtime.

By default, EditLive! for XML will bind to the form onsubmit function.

Automatic Submission

By default the content of the EditLive! for XML applet is retrieved when a form is
submitted. Because of the lack of LiveConnect support on various operating systems
and browsers, EditLive! for XML populates a hidden field with its contents
automatically rather than the developer calling for the contents explicitly.

The name of the hidden field is contained within the same form as the EditLive! for
XML instance and is given the name that was specified by the developer when the
EditLive! for XML instance was created. For example, if ELApplet1 was specified as
the name for the instance of the EditLive! for XML applet then the applet would store
its contents in the hidden field named ELApplet1. This hidden field is then posted with
the rest of the form data when the submit button is pressed.

The Visual Designer also submits content via the JavaScript onsubmit function. The

45

Integrating EditLive! for XML

data model for an instance of the Visual Designer will be submitted in the form field
name designer xsd where designer is the name of the instance of the Visual
Designer.

Also submitted by the Visual Designer is a collection of views. Each view is submitted
within a separate form field. All the form fields containing views are given the same
name, forming a collection in the request object in your application server. The form
fields in which the views are submitted are named designer xslt where designeris
the name of the instance of the Visual Designer. The names corresponding to these
views are contained within the collection of form fields named designer viewName.
The order of the collection of view names matches that of the views.

y 1 Caution

EditLive! for XML automatically updates the hidden field by attaching
itself to the form's onsubmit() handler. If there is already a function
specified in the onsubmit() handler then this function will run after the
hidden field has been updated. This means that you can still use the
onsubmit() handler to run your own JavaScript functions. If you use
another button/image/event to submit the form by calling form.submit()
the browser will not call the onsubmit() handler and EditLive! for XML
will not populate the hidden field with data. For this reason, please ensure
you use form.onsubmit() to avoid this problem.

Through the use of this method the content of the EditLive! for XML applet can only
be retrieved when the form in which the applet is embedded and submitted to the
server. This does not facilitate the retrieval of data from the applet at runtime. To
retreive the content at runtime the EditLive! for XML JavaScript API functions must
be used.

Disabling the onsubmit Content Submission

The automatic submission of the content of the EditLive! for XML applet can be
disabled through the use of an API setting. By setting the AutoSubmit property to
false the automatic content submission can be disabled. By default the automatic
submission of content by the applet is enabled.

JavaScript Runtime API Functions

In order to retrieve or manipulate the contents of the EditLive! for XML at runtime the
GetDocument function from the JavaScript runtime API can be used. For more
information on the JavaScript API please see the EditLive! for XML JavaScript API
Reference. The GetDocument function retrieves the XML document from EditLive!
for XML. This function takes a string representing the name of the JavaScript

46

Integrating EditLive! for XML

function, which receives the retrieved XML document, as a parameter. A second,
optional parameter which is a boolean can also be used with this function. This second
parameter can be used to indicate whether the GetDocument function uploads any
images within the source to the Web server and adjusts their URLSs accordingly.

Example

This example demonstrates how the GetDocument function may be used to retrieve
the content of an instance of the EditLive! for XML applet called editlive. Note that
this code is in JavaScript and it assumes that an instance of the EditLive! for XML
applet called editlive has already been instantiated within the relevant Web page. Also
shown is a JavaScript function called JSFunctionName which is used to set a form
field with the content retrieved from the applet.

When the GetDocument function is called then it passes a string corresponding to
the contents of the applet back to the function that is named in the parameter of the
GetDocument function.

Note that the optional parameter forcing image upload is set to t rue to ensure any
necessary images are uploaded. This ensures that the location of images correctly
point to the relevant Web server within the EditLive! for XML source.

<script language="JavaScript">

Ll==
function JSFunctionName (appletContentString) {
document.form.formField.value = appletContentString;
}
-—>
</script>

editlive.GetDocument ('JSFunctionName', true) ;

Ensuring Output is XHTML or XML Compliant

In order to ensure that the output of content in EditLive! for XML XHTML sections is
XHTML or XML compliant attributes in the htmlFilter configuration element:

For XHTML compliant output the following filter settings are required:

» set outputXHTML to true - this ensures that XHTML tags are used (i.e.

instead of
).

47

Integrating EditLive! for XML

» setallowUnknownTags to false - this ensures that no tags outside of the XHTML
standard are used, i.e. custom tags. Instead, custom tags are HTML encoded.

o Itisalso recommended that encloseText is set to true to ensure that content is
correctly nested insides the relevant parent tags.

For XML compliant output the following filter settings are required:

» set outputXML to true - this ensures that special characters are encoded as
numeric entities and that XML style tags are used (i.e. <or /> instead of
).

o Ttis also recommended that encloseText is set to true to ensure that content is
correctly nested insides the relevant parent tags.

Summary

The content from both the EditLive! for XML and Visual Designer applets can be
retrieved upon submission of the form in which the applet is embedded. The XML
document content of EditLive! for XML can also be retrieved via the GetDocument
function of the JavaScript API.

Submitting EditLive! for XML Content Directly Via HTTP
POST

Introduction

Ephox EditLive! for XML can be configured to POST its content directly to a POST
acceptor script on a Web server. This is useful in situations where EditLive! for XML
cannot its content as part of the HTML form submission architecture. The POST
operation can be called by either a custom interface item or via a JavaScript function.

Configuring the PostDocument Parameters

The PostDocument functionality of EditLive! for XML can be configured via the
following parameters:

strFieldName This parameter is required.

The name of the field in the HTTP POST that EditLive!
for XML uses to POST its content.

48

Integrating EditLive! for XML

strPostURL This parameter is required.

The URL for the POST acceptor script that EditLive! for
XML POSTs to.

strResponseProcessing This parameter is required.

This parameter indicates how EditLive! for XML
should process the response. It has the following
possible values:

e saveToDisk

e callback

i | Note

When setting this parameter to callback
the strJsFunctionName must also be
specified.

strJSFunctionName This parameter is optional.

The name of the JavaScript function to be used as a
callback function. The JavaScript function specified
should accept the content of the HTTP response as its
only parameter.

This parameter should be set in conjunction with
setting the st rResponseProcessing parameter to
callback.

When using the PostDocument functionality as a JavaScript function then the
parameters can be used as follows:

PostDocument (strFieldName, strPostURL, strResponseProcessing,
[strJSFunctionName]) ;

For more information on the PostDocument runtime JavaScript function see the
information on the PostDocument function in the JavaScript runtime API.

49

Integrating EditLive! for XML

When using the PostDocument functionality as a custom interface item these
parameters are passed through the value attribute of the custom item. The
parameters are passed as a single string delimited by the string ##ephox##. For more
information see the example below or the article on Custom Menu and Toolbar Items
for EditLive! for XML.

Example 4.2. Configuring a Custom Item to Use the PostDocument Functionality

This example demonstrates how to define a custom menu item which uses the
PostDocument action for use within EditLive! for XML. The menu item defined in
this example will POST the content in the field edit1ive field to the script at
http://someserver/post/POSTacceptor.aspx upon completion of the POST the
content of the HTTP response will be passed to the JavaScript callback function
JSFunction.

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="POST Content"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="PostDocument"
value="editlive field##ephox##http://someserver/post/POSTacceptor.aspx

##ephox##callback##ephox##ISFunction"
/>

</menu>
</menuBar>

</editLive>

Working with the HTTP Response

When EditLive! for XML POSTs its content it will receive the HTTP response. This
response is processed by EditLive! for XML in accordance with the value of the
strResponseProcessing parameter. When set to saveToDi sk EditLive! for XML will
open a Save dialog. This will allow users to save the content of the response to their
local machine.

50

Integrating EditLive! for XML

When set to callback EditLive! for XML will pass the content of the HTTP response
to the JavaScript callback function specified by the st rgsFunctionName parameter.
This JavaScript method should accept the content of the response as a string, this
should be the function's only parameter.

Example 4.3. Using the PostDocument Functionality with a JavaScript Callback

The following example demonstrates how to use the PostDocument JavaScript
function with a JavaScript callback function which processes the response. The
function jscallback receives the content of the response from EditLive! for XML and
places it in a textarea.

<HTML>
<HEAD>
<TITLE>EditLive! for XML JavaScript Example</TITLE>
<!--Include the EditLive! for XML JavaScript Library-->
<SCRIPT src="editlivexml/editlivexml.]js" language="JavaScript">
</SCRIPT>
<!--Define the JavaScript callback function for HTTP response
processing from EditLive! for XML-->
<SCRIPT language="JavaScript">
function jsCallback (responseContent) {
document.exampleForm.responseContentArea.value = responseContent;
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name = exampleForm>
<P>Click this button to POST the document in EditLive!</P>
<P>
<INPUT type="button" name="buttonl" value="Save"
onClick="editlivejs.PostDocument ('editliveField',
'http://someserver/post/postacceptor.jsp', 'callback', 'jsCallback');">
</P>
<!--Create an instance of EditLive! for XML-->
<SCRIPT language="JavaScript">
Ll==
var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;

editlivejs.setDocument (escape ("<P>This is EditLive!</P>"));
editlivejs.show();
-—>
</SCRIPT>

51

Integrating EditLive! for XML

<P>

<TEXTAREA name="responseContentArea" rows="20" cols="50">
</TEXTAREA>
</P>
</FORM>

</BODY>
</HTML>

Important Considerations when Implementing EditLive! for XML
with HTTP POST

When using the EditLive! for XML applet to make the HTTP POST instead of using the
browser's submit mechanisms developers must consider several things:

If it is required that other form variables be submitted with the content of EditLive!
for XML it is best to avoid using the PostDocument functionality of EditLive! for
XML. This is because, when using the PostDocument functionality, the POST of
EditLive! for XML occurs separately to the browser's POST. This can unnecessarily
complicate the server side processing involved in receiving and processing the
POSTed content.

The POST functionality can be used to submit the content of EditLive! for XML to a
completely different POST acceptor than the browser's POST. Thus, EditLive! for
XML can submit its content easily to two separate processes. This can be useful
when using EditLive! for XML in association with a related server side process
which produces a response which should be saved to the client. For example, the
POST by EditLive! for XML could send content to a server-side publishing engine
which transforms the document into a PDF or some other format which is returned
to the client in the HTTP response which can then be saved. In this situation the
browser's POST mechanism would still be used to submit the EditLive! for XML
with values from other fields for saving.

When using the callback mechanism developers should be careful to provide
users with adequate feedback by displaying the HTTP response in case the POST
operation fails.

Summary

The PostDocument functionality gives developers an alternative way of submitting
the content of EditLive! for XML to their systems. It can be implemented either via a

52

Integrating EditLive! for XML

custom interface item or as a JavaScript function. When implementing EditLive! for
XML to POST its content directly there are several important considerations that
should be addressed to ensure that EditLive! for XML will behave as expected.

See Also

« PostDocument function

e« Custom Menu and Toolbar Items for EditLive! for XML

Encoding Content for Use with EditLive! for XML

Introduction

When working with content that is to be placed in EditLive! for XML it must be

ensured that the relevant content is URL encoded before it is used with EditLive! for
XML. Content is required to be URL encoded so that it can be used with the JavaScript
used to instantiate EditLive! for XML.

It is recommended that when URL encoding content that this operation be performed
on the server side through the use of the appropriate server side scripting function. It

is possible to use the JavaScript escape function however this is not recommended as
this function does not correctly URL encode all content and may break.

URL Encoding Functions

Most scripting languages provide a function to URL encode strings. The following
section defines URL encoding functions which can be used with several common
server side scripting languages.

ASP

The URL encoding function which can be using in ASP is Server.URLEncode. This
can be used in the following manner:

Example 4.4. URL Encoding with ASP

Server.URLEncode ("this string will be url encoded")

ASP .NET (C#)

53

Integrating EditLive! for XML

The URL encoding function which can be used in ASP .NET is
HttpUtility.UrlEncode. This class is part of the System.Web package. The
function can be used in the following manner, with the correct "using" statement:

Example 4.5. URL Encoding with ASP.NET (C#)

using System.Web;
HttpUtility.UrlEncode ("this string will be url encoded");

JSP (Java)

The URL encoding method which can be used in JSP and Java classes is the
URLEncoder.encode() method. The URLEncoder class can be found in the
java.net package. The function can be used in the following manner and the relevant
import statements must be included:

Example 4.6. URL Encoding with JSP

import java.net.URLEncoder;
URLEncoder.encode ("this string will be url encoded");

PHP

When using the PHP URL encoding functions it is important to use the
rawurlencode function as opposed to the urlencode function. The function can be
used in the following manner:

Example 4.7. URL Encoding with PHP

rawurlencode ('this string will be url encoded');

» Note

A

It is important to note that the urlencode function provides different
functionality to the rawurlencode function. The urlencode function

54

Integrating EditLive! for XML

encodes spaces as + symbols which may cause errors with EditLive! for
XML.

ColdFusion

When implementing an EditLive! for XML integration with ColdFusion the URL
encoding function which should be used is URLEncodedFormat. This function can
be used in the following way:

Example 4.8. URL Encoding with ColdFusion

urlencodedformat ("this string will be url encoded");

Perl

Perl does not include a URL Encode function as part of the standard libraries and
therefore developers must write their own. This can be achieved through the use of
regular expressions. The following code gives an example on how this may be
achieved:

Example 4.9. URL Encoding with a Regular Expression in Perl

#!/usr/bin/perl S$encodeString = "this string will be url encoded";
$encodeString = ~s/(["A-Za-z0-9 \-.]/uc
sprintf ("%$%%02x",ord ($1)) /eg;

Summary

Content which is to be added to EditLive! for XML should be URL encoded. The
methods listed above can be used to URL encode content with several popular
scripting languages. The JavaScript escape function can also be used, however, this is
not recommended as the encoding provided by this function does not comply with
URL encoding.

55

Chapter 5. Visual Designer

Using the Visual Designer

Introduction

The Visual Designer tool enables users to create and design forms for use with
EditLive! for XML. Each form consists of a schema and one or more views. Together,
these files form a solution which can be developed in the Visual Designer and then
deployed for use with EditLive! for XML.

Creating and Editing a Schema

The Visual Designer allows for the editing of the schema for the intelligent forms used
in EditLive! for XML.

The schema provides EditLive! for XML with the rules for the data to be captured from
users.

The schema created by the Visual Designer is output as an XML Schema Document
(XSD) which can then be used as an input to EditLive! for XML.

Naming the Root Element

The root element is the highest level XML element that contains all other elements in
your document.

By default the name of the root is untit1led, this should be changed to something
more meaningful for the schema which is being created. For example, if the schema
was for a purchase order the root element may be named purchase0Order.

To change the name of the root:

1. Right click the root element and select Properties... on the shortcut menu.
2. Inthe Properties dialog, enter the name in the Name text box.

3. Click OK.

» Note
A

The names of fields cannot contain spaces and can only begin with a letter.

56

Visual Designer

"non

They can only contain alphanumeric characters, underscores (" "), periods

(".") and hypens ("-").

Adding a Group

Groups contain other elements and attributes and enable the creation of controls
which contain other controls such as repeating sections. For example, in a purchase
order schema you might have a 1tem group which contains elements or attributes for
the item such as description, quantity and price.

To create a new group:

1. Right click the root element and select Add Group... on the shortcut menu.
2. Inthe Properties dialog, enter the name of the group in the Name text box.

3. Click OK.

Adding an Element

Elements are used to store data within EditLive! for XML. Elements can exist as a
child of the root element or a group. They may also be of a specific type. Creating a
simple element of a specific type allows form designers to constrain the user input for
a particular field. By default a simple element must appear only once within its parent.
The element can be changed to be a repeating or optional element by setting the
Minimum and Maximum occurrences for the element within its properties. For
example, in purchase order schema may contain a CompanyName element for capturing
the name of the company.

To create an element:

1. Right click the root element or group which is to be the parent of the element and
select Add Simple Element... on the shortcut menu.

2. Inthe Properties dialog, enter the name of the group in the Name text box.

3. Click OK.

Adding an Attribute

Attributes are similar to elements but are less flexible and cannot be extended as
easily. Like elements, attributes may also be of a specific type and have constraints

57

Visual Designer

placed upon their value. Attributes may occur a maximum of once within an element.

To add an attribute:

1. Right click the root element, group or element the attribute is to be added to and
select Add Attribute... on the shortcut menu.

2. Inthe Properties dialog, enter the name of the group in the Name text box.

3. Click OK.

Specifying Data Types for Simple Elements and Attributes

The type of data which may be entered for a simple element or attribute can be
specified via the Visual Designer.

anySimpleType

string

boolean

integer

decimal

date

A field with the type anySimpleType can contain any content as
long as it is well-formed XML. When added to a view the default
control for a field of type anySimpleType is a text box

A field with the type string can contain any Unicode character.
When added to a view the default control for this data type is a
text box.

A field with the type boolean can contain the values t rue or
false. When added to a view the default control for this data type
is a check box.

A field with the type integer can contain negative or positive
whole number values. When added to a view the default control
for this data type is a text box which will only enable a user to
enter numbers or a positive (+) or negative (-) symbol. Examples
of a valid integer are 1234, -4567 or +789.

A field with the type decimal can contain numeric values. When
added to a view the default control for this data type is a text field
which will only enable a user to enter numbers, a postivite (+) or
negative (-) symbol, or a decimal point (.). Examples of a valid
decimal are 0.3, -.3 or +3.5.

A field with the type date can contain date values. When added to
a view the default control for this data type is a date-picker which
enables users to easily enter a date manually or to select a date
from a calendar. Dates will be presented to users in a format

58

Visual Designer

according to their client locale.

» Note

)

Dates are stored in the XML document in the format
defined by Section 5.2.1 of ISO 8601 i.e. cCyy-Mv-DD
where cc represents the century, vy represents the
year, MM represents the month and pp represents the
day. Example dates include 2005-05-01 (May 1, 2005)
and 1788-01-26 (January 26, 1788).

time A field with the type time contains time values. When added to a
view the default control for this data type is a time-picker which
enables users to easily enter a time in a format specified by their
client locale.

* Note

.

Times are presented to users according to their local
time zone and stored in the XML document in
coordinated universal time (UTC) which is a 24-hour
time as defined by Section 5.3 of ISO 8601 i.e.
hh:mm:ssZ where hh, mm and ss represent hour, minute
and second respectively, the z indicates that times are
stored in UTC. Examples of valid times are 08:33:15Z
(8:33 am and 15 seconds UTC) and 21:56:25Z (9:56 pm
and 25 seconds UTC).

dateTime A field with the type dateTime contains both a date and a time
value. When added to a view the default control for this data type
is a date-time-picker which allows users to easily select both a date
and a time. Date-time values will be presented to users in the
format specified by their client locale.

iJ Note

Date-times are stored in the XML document in the
format defined by Section 5.4 of ISO 8601 i.e.
CCYY-MM-DDT hh:mm:ssz where cC represents the
century, vy represents the year, vMrepresents the
month and pp represents the day. The character T
separates the date from the time and hh, mm and ss
represent hour, minute and second respectively. The z

59

Visual Designer

indicates that the time is expressed in UTC. Times are
presented to users according to their local time zone
and stored as a UTC representation. An example of a
valid date-time is 2004-05-01T21:56:25Z (9:56pm and
25 seconds UTC, May 1, 2004).

xhtml A field with the type xhtml can contain rich text values. In an
xhtml field authors can use formatting such as bold, italic and
underline, insert images and hyperlinks and access other word
processor-like functionality in EditLive! for XML. When added to
aview an xhtml section appears as a rich text box.

Specifying Constraints and Defaults

Fields (simple elements or attributes) can have constraints placed upon their values.
The types of constraints which may be placed on a field depends on the data type of
the field. Each constraint consists of the property on which the constraint is applied, a
comparison operator and a value. Users may select from a lists of properties and
comparison operators to construct a constraint.

The schema enables designers to specify a default value for a field. When placed into
EditLive! for XML the default value will appear within the control prior to any data
being entered. To specify a default value for a field:

1. Right-click the simple element or attribute and select Properties...

2. Enter the default value in the Default Value text box

3. Click OK

Optional Elements

By default, when elements are added to the schema they have both their minimum and
maximum number of occurrences set to one.

To change a simple element to be optional:

1. Right-click the simple element or attribute and select Properties...
2. Change the Minimum Occurrences to 0

3. Click OK

60

Visual Designer

Repeating Elements

To change a simple element to be repeating:

1. Right-click the simple element or attribute and select Properties...
2. Enter a number greater than 1 in the Maximum Occurrences text box or select

the check box Unlimited Occurrences.

When adding a repeating or optional element a button with the label Add element
name, where element name is the name of the element, will be automatically added to
the form. This button will allow users to insert extra instances of the repeating element
as required.

Repeating groups may also be defined. To create a repeating group of elements:

1. Create or move the related elements within a single group.
2. Right-click the group and select Properties...

3. Enter a number greater than 1 in the Maximum Occurrences text box or select
the check box Unlimited Occurrences.

When a repeating group is added pressing the Add element name button in EditLive!
for XML will result in the parent element and its children being added to the
document.

Moving an Element, Attribute or Group

To move an element, attribute or group:
1. Drag-and-drop the field or group to the new location.
Or to move an element, attribute or group:

1. Right-click the field you want to move and select Move... on the shortcut menu.

2. Inthe Select Group dialog, select a new location for the element or attribute.

Designing a View

61

Visual Designer

A view is a representation of the schema which allows users to edit the underlying
XML document. A view provides EditLive! for XML with a template for a form. Views
contain controls, allowing the underlying XML document to be easily edited. In
addition to controls views may also contain formatted text, tables, images and other
rich text elements.

Creating Rich Text Content for a View

Rich text content within a view consists of all objects within a view except controls. By
adding rich text elements to a view designers can provide visual cues indicating how a
form should be filled out. The rich text editing capabilities of the Visual Designer are
extensive and allow form designers to insert images, tables, lists, hyperlinks and
formatted text into a view.

Adding Elements and Attributes to a View

There are two ways in which an element or attribute can be added to a view. Elements
and attributes can be drag-and-dropped into a view, they can also be inserted at the
current cursor location within the view through the Insert at cursor menu item.

When an element is placed within a view its attributes, children and their attributes
are all placed within the view with their default renderings.

Adding Form Controls to a View

Interaction with the underlying XML document in EditLive! for XML is performed
through the inclusion of form controls. These controls allow content contributors to
enter data within the XML document without exposing them to the XML. Controls are
embedded within a view when a field from the schema is placed within a view. Action
buttons, which allow users to create and remove repeating elements can also be added.

Form Controls

Form controls provide users with a means of entering data into an underlying XML
document. When an element or attribute from the schema is placed into a view the
form field associated with it is the default for that data type. The default form control
type for each data type is as follows:

anySimpleType The default for this data type is a text field which will accept any
character input.

string The default for this data type is a text field which will accept any
character input.

62

Visual Designer

boolean The default for this data type is a checkbox.

integer The default for this data type is a text field which will accept only
numeric characters and the + and - characters.

decimal The default for this data type is a text field which will accept only
numeric characters and the +, - and . characters.

date The default for this data type is a date-picker.

time The default for this data type is a time-picker.

dateTime The default for this data type is a combined date-time-picker.
xhtml The default for this data type is a rich text field.

There are several types of form controls which may be used for interacting with the
XML document in EditLive! for XML. Form designers can specify the type of
intelligent form element which is associated with a schema element or attribute via the
Control Properties dialog. The following provides a list of available form control

types and their functionality.

Check Box

Date Picker

Date and Time Picker

Drop Down List

A check box allows users to enter a value of either true
or false into the XML document. When the check box is
checked a value of true will be entered and when the
check box is left blank a value of false is entered.

A date picker control allows users to select a date from a
calendar interface. If constraints have been placed on the
value of the date users may only select a date from the
valid range.

A date time picker control enables users to select both
the date and the time using a calendar interface to select
the date and a clock to select the time.

A drop down list allows users to select a value for the
field from a series of values which have been specified by
the form designer. Form designers can specify a list of
values via the Control Properties dialog when
creating the view for the form. A drop down list only
displays the currently selected value when it is not active.
When active a drop down list will display a list of items
to choose from.

63

Visual Designer

List

Text Field

Time

Rich Text

A list allows users to select a value for the field from a
series of values which have been specified by the form
designer. Form designers can specify a list of values via
the Control Properties dialog when creating the view
for the form. A list differs from a drop down list in that
all list options are visible to users, with the currently
selected list item highlighted.

A text field control allows users to enter a plain text
value. Valid input for a text field varies according to the
data type used with the field. The following is a list of
data types and the associated functionality of a text field:

anySimpleType or string If the data is of the
type anySimpleType
or string then the text
field will accept the
input of any
characters.

integer If the data is of the
type integer then the
text field will accept
numeric characters
and the + and -
characters.

decimal If the data is of the
type decimal then the
text field will accept
numeric characters
and the +, - and .
characters.

A time picker control allows users to enter a time more
easily. Time contols accept time in 24-hour format. A
time control is split into three values, hours, minutes and
seconds. These can be selected separately.

Rich text controls may only be used with the XHTML
data type. These give contributors access to full
WYSIWYG rich text authoring. Users can include
images, tables, lists, hyperlinks, formatted text and other

64

Visual Designer

rich content within these fields. Using these controls
users may also copy content from Microsoft Word.
Content from XHTML controls is stored within the XML
document as XHTML.

Action Buttons

Action buttons are added to a view to enable users to dynamically add or remove
elements. The Visual Designer will automatically add action buttons if required when
an element is added to a view. There are two types of action buttons available,
Remove and Insert buttons. Remove action buttons are associated with each
instance of an element. Insert action buttons are associated with a group of repeating
elements. The Insert action button for an element will be present where the next
element of that kind can be inserted. For insert buttons once the maximum number of
instances for the relevant element has been reached the corresponding Insert action
button will no longer be available.

Adding Repeating Elements to a View

When adding repeating elements to a view it is important to note that a view within
the Visual Designer provides a template for the element and not an exact replica of the
form from EditLive! for XML. For example, if an element has its minimum
occurrences attribute set to three it will appear three times within EditLive! for XML.
However, in the Visual Designer it will only appear once, as a template. The template
for the element, as it appears in the Visual Designer, will appear for each of the three
times it is present in EditLive! for XML.

Creating Multiple Views

Multiple views can be used with a single schema. Thus designers can split a schema
across several forms. It also allows a schema to be presented to the user in several
different ways. Views can be added via the Add button on the Views tab within the
Visual Designer. Where multiple views are present within the Visual Designer form
designers can use the Views tab to access separate views. Double clicking on the name
of a view will open the view for editing within the Visual Designer.

Visual Designer Output Formats

The Visual Designer outputs the schema and views in formats which comply with XML
standards. The schema is output as an XML Schema Document (XSD) and each view
is output as an XML Style Sheet (XSL). These outputs can then be used as inputs to
EditLive! for XML either from a Web accessible location on the file system or
embedded as text when EditLive! for XML is instantiated.

65

Visual Designer

Retrieving Content from the Visual Designer

The Visual Designer submits content as part of the browser's submit mechanism. The
Visual Designer submits its content when the form it is embedded in is submitted via
the JavaScript onSubmit function. When POSTing data the Visual Designer will
output the schema as an XSD in one form field. Views will be submitted as XSLs, each
XSL will be placed within separate fields with the same name. This creates a collection
within the POST which may be iterated over to retrieve each view.

A schema for an instance of the Visual Designer will be submitted in the form field
named designer xsd where designer is the name of the instance of the Visual
Designer.

The Visual Designer submits each view in a separate field, however, each view field has
the same name. Thus, when processing the browser's request the set of views from the
Visual Designer can be found as a collection within the POSTed data. The form fields
in which views are submitted are named designer xslt where designer is the name
of the instance of the Visual Designer.

The collection of names for the views generated in the Visual Designer are also
POSTed by the Visual Designer. Each view name is submitted in a separate field,
however, each view name field has the same name in the POST. Thus, when processing
the browser's request the set of view names from the Visual Designer can be found as a
colelction within the POSTed data. The order in which the view names are POSTed is
the same as that for the views. The form fields in which view names are submitted are
named designer viewName where designer is the name of the instance of the Visual
Designer.

Exporting Files from the Visual Designer

The Visual Designer enables users to export a view or schema to the file system. This
enables users to store schemas and views on the file system which may be used as
inputs for EditLive! for XML when placed in a Web accessible location. When
exporting the schema it will be stored as an XSD on the file system with the extension
.xsd, the XSD may be exported by using the Export Schema menu item. When
exporting a view it will be stored as an XSL on the file system, with the extension .xs1,
XSLs may be exported by using the Export StyleSheet menu item.

Conclusion

The Visual Designer is a tool which allows users to create schemas and views which are
then used to construct an intelligent form within EditLive! for XML. The schema
created within the Visual Designer designates what data is to be captured, the type of
data and any constraints on the data. It also provides form designers with a means of

66

Visual Designer

logically grouping related data.

Views created within the Visual Designer allow form designers to specify how data will
be presented to users. A view is a mixture of rich text objects and form controls. The
rich text components of a view give designers the flexibility to add formatted text,
images, tables, lists and other elements to each view while the addition of form
controls provides an interface to the underlying XML document within EditLive! for
XML.

The output from the Visual Designer is used within EditLive! for XML to validate and
render XML documents. The Visual Designer provides two forms of output. The
schema is output as an XML Schema Document (XSD) and each view is output as a
separate XML Style Sheet (XSL) document. These can then be used by EditLive! for
XML by reading them from a Web accessible location or directly from the page which
EditLive! for XML is embedded in.

67

Chapter 6. Cascading Style Sheet
Support

Ephox EditLive! for XML and CSS

Introduction

Ephox EditLive! for XML provides support for the use of Cascading Style Sheets (CSS)
to enforce formatting standards easily by separating content from formatting. Styles
can be used within XHTML sections of an EditLive! for XML document. Styles will
also be used to render text within EditLive! for XML. Styles can be specified via an
external, linked style sheet, through an embedded style sheet or through inline style
information (e.g. in a <spaNn> tag). This article assumes the reader is familiar with the
concept of using Cascading Style Sheets. If you would like to learn more about CSS
before reading this document, please visit the W3C's Introduction to CSS
[http://www.w3.org/MarkUp/Guide/Style].

Adding Styles to EditLive! for XML

EditLive! for XML provides several methods of adding style information to a
document. Furthermore, EditLive! for XML recognizes style information and
populates the style drop-down list box accordingly. EditLive! for XML can apply styles
both as inline styles and block styles. Block styles are applied to an entire XHTML
element such as a <p> tag whereas inline styles are applied to a section of text within a
XHTML element.

Style information for EditLive! for XML can be provided in the following ways:

» The XML configuration file of EditLive! for XML may include style information in
a couple of ways. Note that, with the exception of styles defined inline, style
information specified through the use of the XML configuration file takes
precedence over style information specified in any other way.

« an external style sheet may be specified through the use of the <link> element.

« an embedded style sheet can be specified through the <style> element.

« Microsoft Word Styles - Styles can be imported from a Microsoft Word document.

68

http://www.w3.org/MarkUp/Guide/Style

Cascading Style Sheet Support

It should be noted that EditLive! for XML's CSS support complies with the W3C CSS
precedence rules. Thus inline styles take precedence over an embedded style sheet.
Furthermore the styles listed in an embedded style sheet take precedence over those
from an external style sheet. Finally, when multiple external style sheets are used style
sheets listed last will have precedence if there is any conflict between style sheets.

Specifying Inline and Block Styles

The way in which styles are specified within a style sheet affects the way they can be
applied within EditLive! for XML. Style classes which are directly associated with a
block tag can only be applied to a block tag. These styles are designated by a § symbol
on the styles drop down in EditLive! for XML. A block style which defines that
paragraph text should be blue can be defined as follows:

p.blue{color: blue}

Inline styles in EditLive! for XML are applied using the XHTML element.
Thus, to define a style which can only be used inline it should be defined as a class to
be used with the tag. These styles are designated by a a mark on the styles
drop down in EditLive! for XML. An inline style which would specify text that is to
have a red color would be as follows:

span.redtext{color:red}

Finally, it is possible to define a style class which may be used as both an inline and
block style. These styles appear twice on the EditLive! for XML styles drop down, once
marked with the § symbol and again with a a mark. A style class which could be
applied on both block and inline tags to change the text color to green is as follows:

.green{color:greent}

Including Styles via the Configuration File

Linking to an External Style Sheet

EditLive! for XML can be configured to use external style sheets by specifying a value
with the <link> element in the configuration file.

69

Cascading Style Sheet Support

When EditLive! for XML links to multiple style sheets, the last style sheet added will
have priority if there is a conflict with an earlier style sheet.

For example, if stylesheet1.css defined H1 as:

H1 { font-family: Arial,Helvetica,sans-serif; font-size: 24pt; }

and another style sheet linked after stylesheeti.css 1, defined H1 as:

H1 { font-family: Arial,Helvetica,sans-serif; font-size: 48pt; }

the value of stylesheeti.css for H1 would be overridden by the value given in the
second style sheet (i.e. H1 would be size 48pt, not 24pt). Hence, the order that style
sheets are added is important and will effect how the HTML is formatted.

Defining an Embedded Style Sheet

Through the <style> element of the EditLive! for XML configuration file an
embedded style sheet can specified. Styles listed in a style sheet embedded via the
XML configuration file take precedence over styles otherwise defined. The following
would configure EditLive! for XML to use the provided embedded style sheet. The
embedded style sheet used for this example would implement a mixture of inline and
block styles.

<editLive>
<document>
<html>
<head>
<style>
Ll==
p.blue{color: blue}
span.red{color: red}
.green{color: green}
-—>
</style>
</head>
</html>
</document>

</editLive>

70

Cascading Style Sheet Support

Importing Styles from Microsoft Word

Unless the styleOption attribute of the <wordImport> element in the
configuration file is set to clean, styles may be imported from Microsoft Word. When
styles are imported in this manner they are added to the embedded style sheet of the
document in the Visual Designer. If a style of the same class already exists in the
Visual Designer it will take precedence over any style from Microsoft Word.

. Note

.y

Style information cannot be imported from Microsoft Word when using
EditLive! for XML. It is recommended that the styleOption attribute of
the <wordImport> element in the configuration file is set to clean
within the configuration for EditLive! for XML.

Populating the Styles Drop-down List Box

When style information is added to EditLive! for XML then style information will be
added to the style drop-down list box. This means that users can quickly and easily
access style information. For example, if a style sheet defined the following styles:

hl{color: yellow}

p.blue{color: blue}
span.red{color: red}
.green{color: green}

Then .blue and .red and .green would appear as options within the styles drop-down
list box giving users easy access to this style information. Also the Heading 1 style
would have yellow colored text.

In the EditLive! for XML styles drop down block styles are depicted with a § symbol
next to them and inline styles are depicted with a a symbol next to them. Thus, the
style drop down for the above example may appear as follows:

Heading 1 1
blue J
.reda

green

71

Cascading Style Sheet Support

.green a

Note that the . green class appears twice as it can be applied as both an inline and a
block style. For more information please see the Specifying Inline and Block Styles
section of this article.

Summary

EditLive! for XML provides excellent support for implementing cascading style sheets
(CSS). Style information can be used with an EditLive! for XML document in a
number of ways; as an externally linked style sheet, as an embedded style sheet or
importing content from Microsoft Word. This style information will then be used by
EditLive! for XML to populate the styles drop-down list box giving users easy access to
style information.

See Also

e <link>element
e <style>element
+ <wordImport> element

« W3C's Introduction to CSS [http://www.w3.org/MarkUp/Guide/Style]

Using Ephox CSS Extensions with Custom Tags

EditLive! for XML includes extensive support for the embedding of custom tags within
HTML. As part of the support of EditLive! for XML for custom tags in HTML
developers can provide custom rendering for these tags. Ephox CSS extensions can are
used to customize the rendering of these tags. The styles with which custom tag
rendering is specified in EditLive! for XML can be provided either as an external,
linked style sheet or through an embedded style sheet. For more information on using
style sheets with EditLive! for XML please see the section on Ephox EditLive! for XML
and CSS.
» Note

A
Inline style information should not be used to specify rendering for a
custom tag.

Specifying Rendering for a Custom Tag

72

http://www.w3.org/MarkUp/Guide/Style

Cascading Style Sheet Support

A CSS style can be used to specify the way in which a custom tag is to be rendered. The
style should match the name of the custom tag. Developers can specify whether the
custom tag is rendered as an inline (e.g.), block (e.g. <P>) or empty tag (e.g.
). Furthermore icons and labels can be specified to be used for rendering the
tag.

Example 6.1. Declaring a CSS Style for Rendering a Custom Tag

The following example demonstrates how to specify rendering information for the
custom tag <MyTag> and its closing tag </MyTag>. The icon myicon.jpg (mapped to
by the URL http://www.server.com/icons/myicon.jpg), the start label custom
Tag and end label /custom Tag are specified for rendering the custom tag. Also, the
custom tag is displayed as a block tag.

When specifying a custom tag to be used with EditLive! for XML the display attribute
must be assigned. The value of the display attribute affects the way in which the
custom tag is processed by EditLive! for XML. For more information see the reference
on the display attribute.

MyTag {
display: block;
ephox-icon: url (http://www.server.com/icons/myicon.jpg);
ephox-start-label: Custom Tag;
ephox-end-label: /Custom Tag

More Information

For more information on the Ephox CSS Extensions for Custom Tags please see the
chapter titled Ephox CSS Extensions for Custom Tags.

73

Chapter 7. Deployment
Optimizations

Minimizing an EditLive! for XML Deployment

It is possible to minimize a deployment of EditLive! for XML which can be especially
useful when deploying EditLive! for XML to Web servers with a limited amount of disk
space available.

All the files required to deploy EditLive! for XML to a Web server are included in the
INSTALL HOME/webfolder/redistributables directory of your EditLive! for XML
install where TnsTALL HOME is the directory to which the EditLive! for XML SDK has
been installed.

The redistributables directory contains three sets of files:

» The EditLive! for XML source files, these are found in the . . ./redistributables
directory.

o The EditLive! for XML dictionaries, there are found in the
.../redistributables/dictionaries directory

In the redistributables/dictionaries itis possible to remove all the dictionaries
apart from those being used with your implementation of EditLive! for XML. The
dictionary to be used with an instance of EditLive! for XML is specified within the
EditLive! for XML configuration XML in the <spellCheck> element.

Inthe .../redistributables directory it is possible to deploy without the Java
Runtime Environment (JRE) installer and instead force users to download the
installer from Sun Microsystems. When deploying the JRE in this manner it must be
ensured that clients have access to the Internet to download the installer. It should
also be ensured that clients have the relevant access permissions to install the JRE on
their machines.

In order to force users to download the JRE from Sun Microsystems the
LocalDeployment property of your SDK must be set to false when instantiating
EditLive! for XML.

Summary

74

Deployment Optimizations

In order to minimize the install of EditLive! for XML the developer can remove
various files from the redistributables directory and its subdirectories. When
removing files from this directory the developer should take care to ensure that the
files are not in use in their deployment of EditLive! for XML.

See Also

+ <spellCheck> XML element

Optimizing EditLive! for XML Load Times

Introduction

This document discusses ways in which the load time of EditLive! for XML can be
optimized. There are several ways in which the load time of EditLive! for XML may be
reduced. These include preloading the Java Plug-in, configuring the instance of
EditLive! for XML via text embedded in the relevant Web page instead of using URLSs
and deploying the Java Runtime Environment (JRE) in the manner best suited to your
environment.

Preloading the Java Plug-in

In order to run the EditLive! for XML applet a browser must first load the Java
Plug-in. The loading of the Java Plug-in occurs the first time a browser session seeks
to use a Java applet and the loading of the plug-in can take a noticeable amount of
time. EditLive! for XML includes functionality which allows for the preloading of the
Java Plug-in for a browser session. This functionality can be added to any page within
the relevant Web application to decrease the load time of EditLive! for XML when it is
eventually used. This functionality may be of most use when implemented on the user
login page of a Web application as it will decrease the load time for future uses of
EditLive! for XML within the Web application during the relevant session.

An example of the preloading functionality, implemented in JavaScript, can be seen
below. For more information please refer to the Preload property in the EditLive! for
XML SDK.

Example

The following code would preload the JVM and EditLive! for XML classes and then
alert the user that EditLive! for XML has finished loading by using the preloadreturn
callback function to create a JavaScript alert dialog.

75

Deployment Optimizations

<script language="javascript">

var editlivel;
editlivel = new EditLiveXML ("ELAppletl","1","1");
editlivel.setDownloadDirectory ("redistributables/editlivexml") ;
editlivel.setConfigurationFile ("editlivexml/sample elconfig.xml");
editlivel.setBody (" "); editlivel.setPreload ("preloadReturn");
editlivel.show () ;
function preloadReturn () {

alert ("Preloading of the JRE and applet is complete.");

</script>

Configuring EditLive! for XML via ConfigurationText

When using an XML configuration file to customize the EditLive! for XML interface
EditLive! for XML must make a HTTP request to the server to retrieve the relevant
XML file. However, if the EditLive! for XML configuration is set via an XML document
which is embedded directly in the relevant page EditLive! for XML no longer has to
make an extra HTTP request to the Web server and load time is decreased.

Embedding an XML configuration document within the relevant Web page can be
achieved by simply placing a URL encoded version of the XML configuration file onto
the page. However, it is advisable to use the file reading capabilities of your server side
scripting language to read the relevant file directly from the Web server's file system
into a temporary scripting variable on the relevant page and then load it into EditLive!
for XML. This is achieved via the ConfigurationText property.

Example

The following JavaScript code passes in an XML document which will be used to
customize EditLive! for XML. The code uses the default JavaScript escape function to
encode the document, however, where possible, a server-side URL encoding method
should be used to escape the XML text.

i | Note

» The XML document seen here is not complete. The XML text passed in
must comply with the EditLive! for XML Configuration DTD.

« The string passed to the setConfigurationText property must be

76

Deployment Optimizations

URL encoded or encoded using the JavaScript escape function. The
example below uses the JavaScript escape function but it is
recommended that a server-side URL encoding method be used.

var editlivel;
editlivel = new EditLiveXML ("ELAppletl","700","400");
editlivel.setConfigurationText (

escape ('<?xml version="1.0" encoding="UTF-8"?> <editLive>...');

Setting the Data Model, Views and XML Document

The data model and views for EditLive! for XML and the Visual Designer can also be
provided by text embedded in the Web page. Views can be added to EditLive! for XML
through the addViewAsText method which data models may be added via the
addXSDAsText. Loading views and data models via this method will decrease load
times by ensuring that EditLive! for XML is not required to make a request to the
server. Views and data models loaded via this method must be provided as a complete,
URL encoded, XML style sheet (XSL) or XML Schema Documents (XSDs)
respectively. It is advised that the file reading and URL encoding capabilities of a
server-side scripting language be used to provide the XSL to the relevant Web page.

Example

The following JavaScript code passes in an XSL and an XSD which will be used to by
EditLive! for XML. The code uses the default JavaScript escape function to encode
the documents, however, where possible, a server-side URL encoding method should
be used to escape the document text.

\LI Note

« The XSL and XSD documents seen here are not complete. The
document text passed in must comply with the XSL and XSD standards.

+ The document text passed to the addViewAsText and
addXSDAsText methods must be URL encoded or encoded using the
JavaScript escape function. The example below uses the JavaScript
escape function but it is recommended that a server-side URL
encoding method be used.

77

Deployment Optimizations

var editlivel;
editlivel = new EditLiveXML ("ELAppletl","700","400");
editlivel.addViewAsText (

escape ('<?xml version="1.0"?2>...', 'First View'));
editlivel.addXSDAsText (

escape ('<?xml version="1.0"2>..."'));

Deploying the Java Runtime Environment

In order to use EditLive! for XML users must have the Java Runtime Environment
(JRE) installed on their machine. If a user does not have the required version of the
Java Runtime Environment installed on their machine it will be deployed
automatically. In cases where the users of EditLive for Java are connected to a local
intranet it may be fastest to deploy the JRE from the local server. A copy of the JRE is
provided with EditLive! for XML for this purpose. To use this installer simply set the
local deployment property of EditLive! for XML to t rue. The following example
demonstrates how to achieve this with the LocalDeployment property of the
JavaScript SDK.

Example

The following code sets EditLive! for XML to use the local copy of the JRE files from
the server.

editlivel.setLocalDeployment (true) ;

Summary

The load time of EditLive! for XML can be optimized through the use of several
developer features. Through the use of these features initial load times can be reduced.
Developers can optimize the load time of EditLive! for XML by preloading the Java
Plug-in, setting various properties via text embedded in the relevant Web page and
downloading the JRE from the local servers if EditLive! for XML is being accessed via
an intranet.

See Also

» Preload property

78

Deployment Optimizations

« ConfigurationText property

« LocalDeployment property

79

Chapter 8. Customizing EditLive! for
XML

Creating Custom Dictionaries for Ephox EditLive! for XML

Introduction

Custom dictionaries may be created for use with Ephox EditLive! for XML. Custom
dictionaries are used to add words to an existing dictionary used by the spell checker
for EditLive! for XML. This document details how to extend the existing dictionary of
a spell checker used by EditLive! for XML. This requires some skill with unzipping
files and using the Java jar command.

Users can also add words to the dictionary which are then stored locally on the client.
Any words added to the local dictionary by users will persist on the client even when
the dictionary is updated on the server. Words are added to the local dictionary when a
user clicks the "Add Word" option on the spell checker.

Specifying a Custom Dictionary

1. Inorder to add a custom dictionary to an existing spell checker the existing spell
checker .jar file must first be unzipped. This file can be found in the
webfolder/redistributables/editlivexml directory of your EditLive! for
XML install. The name of this .jar file will vary with the spell checker your version
of EditLive! for XML is using. Typically the name of the .jar file will be capitalized.
If in doubt as to the name of your existing dictionary please see either the
document on Using Different Spell Checkers with Ephox EditLive! for XML or the
<spellCheck> XML element.

For the purposes of this document and the example contained herein it will be
assumed that the spell checker concerned is named en us 3 0.7jar.

Once you have found this file use a file unzipping utility to extract the contents of
the file. In order to complete the steps required to create a custom dictionary the
spell checker file should be unzipped to a new directory which, initially, contains
only the content extracted from the .jar file.

2. Ifthe file has been extracted correctly from the zip file there should now be two
directories in the directory to which the file was unzipped. Note that these
directories should currently be the only listings within this directory. These

80

Customizing EditLive! for XML

directories are com and META-INF. For the creation process to proceed correctly
delete the META-INF directory from the directory.

_iJ Note

If a custom dictionary has already been created for this spell checker
there will also be a file named userdic.t1x present in the directory
to which the .jar file was extracted. If this is the case and you wish to
extend the existing custom dictionary then do not delete this file. For
more information on this please see the Modifying the Current Custom
Dictionary section of this document. If you wish to remove the current
custom dictionary then delete this file. For more information on this
please see Removing the Current Custom Dictionary section of this
document.

3. With a plain text editor create a file called userdic.t1x in the directory to which
the contents of the .jar file were extracted. This file will be where the listings for
the custom dictionary are placed.

4. At the top of the new file place the following line:

#LID 24941

5. For each word that you wish to place into the custom dictionary list the word in
the userdic.t1x file on its own line. Then, one tab spacing from the word, place
an "i". Thus, lines in the file should appear in the following format:

customword i

6. Repeat step 5 for all the words you wish to add to the custom dictionary. When
finished save the userdic.t1x file.

7. After saving the userdic. t1x file the jar file must be recompiled. This requires

using the Java jar command at the command line in the directory to which the
contents of the original .jar file were extracted.

For example, if the location of the directory to which the contents of the original
Jar file were extracted was c: \originalJar)\ , the location of the jar command
was C:\java\bin\jar and you wished to name the new .jar file customdict.jar
then the command line would be as follows:

C:\java\bin\jar cvf customdict.jar .

81

Customizing EditLive! for XML

. Note

.y

This command is as it would appear if you were currently browsing the
directory to which the original .jar file was extracted via the command
prompt.

Move the newly compiled .jar file, in the case of the example above the file would
be called customdict.jar to alocation where it may be accessed by the EditLive!
for XML applet.

Edit the configuration information for EditLive! for XML to reflect the location of
the new spell checker. For more information on how to do this see the Setting the
Spell Checker for EditLive! for XML section of this document, the document on
Using Different Spell Checkers with Ephox EditLive! for XML or the
<spellCheck>XML element.

Modifying the Current Custom Dictionary

Perform steps 1 and 2 as above in the Specifying a Custom Dictionary section of
this document.

2. Open the userdic.t1x file in a plain text editor.

3. For each word that you wish to add to the custom dictionary list the word in the
userdic.t1x file on its own line. Then, one tab spacing from the word, place an
"i". Thus, lines in the file should appear in the following format:

customword i

4. Repeat step 3 for all the words you wish to add to the custom dictionary. When
finished save the userdic.t1x file.

5. After saving the userdic. t1x file the .jar file must be recompiled. This requires

using the Java jar command at the command line in the directory to which the
contents of the original .jar file were extracted. The name of the new spell checker
Jar file is specified in this step.

For example, if the location of the directory to which the contents of the original
Jar file were extracted was c: \originalJar)\ , the location of the jar command
was C:\java\bin\jar and you wished to name the new .jar file customdict.jar
then the command line would be as follows:

82

Customizing EditLive! for XML

C:\java\bin\jar cvf customdict.jar .

s Note

A

This command is as it would appear if you were currently browsing the
directory to which the original .jar file was extracted via the command
prompt.

6. Move the newly compiled .jar file, in the case of the example above the file would
be called customdict.jar to a location where it may be accessed by the EditLive!
for XML applet or save it in place of the old file.

If the name of the new custom dictionary differs from the old one then edit the
configuration information for EditLive! for XML to reflect the location of the new
spell checker. For more information on how to do this see the Setting the Spell
Checker for EditLive! for XML section of this document, the document on Using
Different Spell Checkers with Ephox EditLive! for XML or the
<spellCheck>XML element.

Removing the Current Custom Dictionary

1. Perform steps 1 and 2 as above in the Specifying a Custom Dictionary section of
this document.

2. Delete the userdic.tlx file from the directory to which the contents of the original
Jar file were extracted.

3. After deleting the userdic. t1x file the .jar file must be recompiled. This requires
using the Java jar command at the command line in the directory to which the
contents of the original .jar file were extracted. The name of the new spell checker
Jar file is specified in this step.

For example, if the location of the directory to which the contents of the original
Jar file were extracted was c: \originalJar\ , the location of the jar command
was C:\java\bin\jar and you wished to name the new .jar file customdict.jar
then the command line would be as follows:

C:\java\bin\jar cvf customdict.jar .

83

Customizing EditLive! for XML

. Note

.y

This command is as it would appear if you were currently browsing the
directory to which the original .jar file was extracted via the command
prompt.

4. Move the newly compiled .jar file, in the case of the example above the file would
be called customdict.jar to a location where it may be accessed by the EditLive!
for XML applet or save it in place of the old file.

If the name of the new custom dictionary differs from the old one then edit the
configuration information for EditLive! for XML to reflect the location of the new
spell checker. For more information on how to do this see the Setting the Spell
Checker for EditLive! for XML section of this document, the document on Using
Different Spell Checkers with Ephox EditLive! for XML or the
<spellCheck>XML element.

Setting the Spell Checker for EditLive! for XML

The spell checkers for EditLive! for XML for different languages are each packaged as
separate files. In order to configure EditLive! for XML to use a spell checker the
program must be informed of the location of the relevant spell checking package, this
occurs via the EditLive! for XML configuration. The <spellCheck> element of the
EditLive! for XML configuration provides EditLive! for XML with the location of the
spell checker package which it is to use. The location is specified as a URL which can
be either relative or absolute. For more information please see the article on Using
Different Spell Checkers with Ephox EditLive! for XML.

Example

This is an example of a full userdic.t1x file that can be used to extend a current
dictionary.

#LID 24941
customdict i
Ephox i
EditLive i
Java i

HTML i

XML i

84

Customizing EditLive! for XML

Summary

The dictionary to be used with EditLive! for XML can be extended to include words
which are not in the standard dictionary. This is done by including a file called
userdic.tlx in the .jar file of the spell checker which is used by EditLive! for XML.
The included file should contain all the words which are to be added to the EditLive!
for XML spell checker.

See Also

» <spellCheck> XML element

« Using Different Spell Checkers with Ephox EditLive! for XML

Customizing the EditLive! for XML Interface

Introduction

The menus and toolbars of Ephox EditLive! for XML are completely customizable
through the EditLive! for XML configuration process. This article explains how the
EditLive! for XML toolbars and menu bars may be configured and how the
configuration of the EditLive! for XML menu bar and toolbars affects the functionality
of EditLive! for XML.

The Menu Bar

The menu bar in EditLive! for XML can have any number of individual menus added
to it. The names of the menus added to the menu bar are completely customizable.
Furthermore, the specification of a mnemonic for the menu is also customizable. To
specify the mnemonic for a menu an escaped ampersand (&) must be specified in the
name attribute of the relevant <menu> element in the XML configuration file.

For example, this would specify the view menu which has the mnemonic of "V":

<editLive>

<menuBar>
<menu name="&View">

</menu>

</menuBar>

85

Customizing EditLive! for XML

</editLive>

Menu Items

Menu items within EditLive! for XML are specified through the use of a
<menultem> XML element. The name attribute of the <menultem> element
determines which menu item is inserted. EditLive! for XML is provided with a
collection of predefined interface items which may be placed on the EditLive! for XML
menus, the shortcut menu or the toolbars. Items from the interface command
collection will have default menu item text associated with them. They may also have
default mnemonics, images and shortcuts. For more information on what interface
commands are available for use please see the EditLive! for XML Interface Command
Collection section of this document.

The following example would add the New, Open..., Save and Save As... items to a
menu with the name File.

<editLive>
<menuBar>

<menu name="&File">
<menultem name="New" />
<menultem name="Open"/>
<menultem name="Save"/>
<menultem name="SaveAs"/>
</menu>

</menuBar>

</editLive>

Menu Item Groups

Some menu items are added to the applet's interface in a group. These groups of menu
items within EditLive! for XML are specified through the use of a
<menultemGroup> XML element. The name attribute of the
<menultemGroup> element determines which menu item group is inserted.
EditLive! for XML is provided with a collection of predefined interface item groups
which may be placed on the EditLive! for XML menus and toolbars. Items from the
interface command collection will have default menu item text associated with them.

86

Customizing EditLive! for XML

They may also have default mnemonics, images and shortcuts. For more information
on what interface commands are available for use please see the EditLive! for XML
Interface Command Collection section of this document. The activation of menu items
in menu item groups is mutually exclusive, for example, the Browser View item
cannot be activated at the same time as the Window View item.

The following example would add the Browser View and Window View items to
the View menu.

<editLive>
<menuBar>
<menu name="&View">
<menultemGroup name="FrameView"/>
</menu>

</menuBar>

</editLive>

Menu Separators

Menu separators are horizontal lines spanning the width of the menu which can be
used to visually break a menu into its constituent parts and areas. These are added
through the use of the <menuSeparator> within a <menu> element. They serve
no purpose other than that of a visual aid.

The About Dialog

The Ephox logo:
L+

and associated About dialog may be removed from the menu interface. The removal
of this menu option is achieved through setting the showAboutMenu attribute of
the <menuBar> element to false.

For example, the following XML would remove the Ephox branding and associated
About dialog from the menu:

<editLive>

<menuBar showAboutMenu="false">

</menuBar>

o7

Customizing EditLive! for XML

</editLive>

Toolbars

The EditLive! for XML applet can be instantiated with multiple toolbars. The
<toolbar> element is used to specify a toolbar within the EditLive! for XML
configuration file. Toolbars will appear within EditLive! for XML in the order which
they are listed within the configuration file. When specifying a toolbar with the
<toolbar> element the toolbar must be given a unique name via the name attribute.
The value of the name attribute does not appear in the user interface of EditLive! for
XML.

The following XML would specify a new toolbar with the name format:

<editLive>
;ééolbars>
<toolbar name="format">
</£éélbar>
</£éélbars>

</editLive>

Each toolbar can have a variety of buttons, button groups and drop down combo boxes
added to it. Toolbar buttons are added via the <toolbarButton> element, toolbar
button groups through the <toolbarButtonGroup> element and combo boxes
through the <toolbarComboBox> element.

Toolbar Buttons

Toolbar buttons in EditLive! for XML are specified through the use of a
<toolbarButton> XML element. The name attribute of the <toolbarButton> element
determines which toolbar button is inserted. EditLive! for XML is provided with a
collection of predefined interface items which may be placed on the EditLive! for XML
toolbars, the menus or shortcut menu. Items from the interface command collection
will have default tool tip text associated with them. Most also have default images,
however some of the items may not have images associated with them. It is
recommended that interface commands without associated images are not placed on
the toolbars. For more information on what interface commands are available for use

88

Customizing EditLive! for XML

please see the EditLive! for XML Interface Command Collection section of this
document.

The following example would add the New, Open..., Save and Save As... items to a
toolbar with the name command:

<editLive>
<toolbars>

<toolbar name="command">
<toolbarButton name="New"/>
<toolbarButton name="Open"/>
<toolbarButton name="Save"/>
<toolbarButton name="SaveAs"/>
</toolbar>

</toolbars>

</editLive>

Toolbar Button Groups

Some toolbar buttons are added to the applet's interface in a group. These groups of
toolbar buttons within EditLive! for XML are specified through the use of a
<toolbarButtonGroup> XML element. The name attribute of the
<toolbarButtonGroup> element determines which toolbar button group is inserted.
EditLive! for XML is provided with a collection of predefined interface item groups
which may be placed on the EditLive! for XML menus and toolbars. Items from the
interface command collection will have default tool tip text associated with them. Most
also have default images, however some of the items may not have images associated
with them. It is recommended that interface item groups without associated images
are not placed on the interface. For more information on what interface commands are
available for use please see the EditLive! for XML Interface Command Collection
section of this document.

The following example would add the Align Left, Align Center and Align Right
buttons from the alignment button group to the toolbar named command.

<editLive>
<toolbars>

<toolbar name="command">
<toolbarButtonGroup name="Align"/>

89

Customizing EditLive! for XML

</toolbar>
</toolbars>

</editLive>

Toolbar Combo Boxes

Combo boxes for the style, font typeface and font size text attributes can be added to
the EditLive! for XML toolbar through the use of a <toolbarComboBox> element
with a specific value for the name attribute. Each toolbar combo box has a specific
value for the name attribute associated with it. Furthermore, the items listed in each
of these combo boxes can be specified by the developer through the inclusion of
<comboBoxItem>child elements in a <toolbarComboBox> element.

For example, the following XML would create the Style drop down combo box in the
EditLive! for XML Format Toolbar with the listing of Normal, Heading 1,
Heading 2 and Heading 3 items which represent the <p>, <u1>, <H2> and <H3>
styles respectively:

<editLive>
<toolbars>
<toolbar name="format">

<toolbarComboBox name="tlbStyle">
<comboBoxItem name="P" text="Normal" />
<comboBoxItem name="H1" text="Heading 1" />
<comboBoxItem name="H2" text="Heading 2" />
<comboBoxItem name="H3" text="Heading 3" />
</toolbarComboBox>

</toolbar>
</toolbars>

</editLive>

The toolbar combo boxes available for use with EditLive! for XML, their
corresponding function and their associated value for the <tocolbarComboBox> name
are listed below.

90

Customizing EditLive! for XML

Example Image

Function

XML Name
Attribute

v Normal
Heading 1~

Heading 2
Heading 4
Heading 5
Heading 6
Formatted

Address

List of styles available for use in this
document.

tIbStyle

[~ Arial B

Courier New

| Verdana

List of fonts available for use in this
document.

tIbFace

| v 8 I'Tj
[10—

12

18

24
36

List of font sizes available for use in this
document.

tlbSize

Toolbar Separators

Toolbar separators are vertical lines spanning the height of the toolbar which can be
used to visually break a toolbar into its constituent parts and areas. These are added
through the use of the <toolbarSeparator> within a <toolbar> element. They

serve no purpose other than that of a visual aid.

The Shortcut Menu

Shortcut menu items in EditLive! for XML are specified through the use of a

<shrtMenuItem> XML element with a specific value for the name attribute associated

with it. EditLive! for XML is provided with a collection of predefined interface items
which may be placed on the EditLive! for XML shortcut menu. Items from the
interface command collection will have default menu item text associated with them.

g1

Customizing EditLive! for XML

They may also have default images. The shortcut menu can also contain submenus.
For more information on what interface commands are available for use please see the
EditLive! for XML Interface Command Collection section of this document.

A

Note

Menu item groups cannot be used on the shortcut menu.

The following example would add the Cut, Copy and Paste items to the Shortcut
menu:

<editLive>

<shortcutMenu>
<shrtMenu>
<shrtMenultem name="Cut"/>
<shrtMenulItem name="Copy"/>
<shrtMenultem name="Paste"/>
</shrtMenu>
</shortcutMenu>

</editLive>

The Element Menu

Within EditLive! for XML the Element Menu is the right-click menu associated with
the Document Navigator Bar. Element menu items are specified through the use of
a <elementMenuItem> XML element with a specific value for the name attribute
associated with it. EditLive! for XML is provided with a collection of predefined
interface items which may be placed on the element menu. Items from the interface
command collection will have default menu item text associated with them. They may
also have default images. For more information on what interface commands are
available for use please see the EditLive! for XML Interface Command Collection
section of this document.

A

Note

Menu item groups cannot be used on the element menu.

The following example would add the Insert Before, Insert After and Insert Into
items to the Element menu:

<editLive>

92

Customizing EditLive! for XML

<shortcutMenu>
<elementMenu>
<elementMenultem name="xmlInsertBefore"/>
<elementMenultem name="xmlInsertAfter"/>
<elementMenultem name="xmlInsertAtCurrent"/>
</elementMenu>
</shortcutMenu>

</editLive>

Submenus

Submenus can be added to the EditLive! for XML menu bar and shortcut menu. The
submenus available for use in EditLive! for XML are the Font, (font) Size and Style
submenus. These are added through the use of the <submenu> XML element with a
specific value for the name attribute.

The <submenu>, if left empty, each of the submenus added will contain the same
items as the corresponding item on the EditLive! for XML toolbar. If the
corresponding item does not exist on the toolbar then the submenu will appear empty.
If the developer wishes to make the submenu items distinct from the toolbar items the
<submenu>element may have <menultem> child elements added to it. It should
be noted that once menu items are specified within a submenu then the contents of
the submenu will no longer mirror the corresponding toolbar element.

The following example would add the Font submenu to the Format menu with items
on the submenu corresponding to the items specified in the Font drop down combo
box of the EditLive! for XML toolbar:

<editLive>
<menuBar>
<menu name="Format">
<submenu name="mnuFontFace"/>
</menu>
</menuBar>

</editLive>

93

Customizing EditLive! for XML

The following example would add the Style submenu to the Shortcut menu with
items on the submenu corresponding to the items specified in the Font drop down
combo box of the EditLive! for XML toolbar:

<editLive>

<shortcutMenu>
<shrtMenu>

<submenu name="mnuFontFace" />

</shrtMenu>
</shortcutMenu>

</editLive>

The following example would add the Style submenu to the Format menu. The menu
created would contain the Normal and Heading 1 which respectively correspond to

the <P> and <H1> styles. Note that this submenu would NOT contain the values from
the corresponding toolbar item.

<editLive>
<menuBar>
<menu name="Format">
<submenu name="mnuFontStyle">
<menultem name="P" text="Normal" />
<menultem name="H1" text="Heading 1" />
</submenu>
</menu>
</menuBar>

</editLive>

The submenus available for use with EditLive! for XML, their corresponding toolbar
item, mnemonic and their associated value for the <submenu> name are listed below.

Submenu Item (XML Name Corresponding |Mnemonic
Name Attribute Toolbar Item

94

Customizing EditLive! for XML

Font mnuFontFace tlbFace - Font F
Size mnuFontSize tIbSize - Size S
Style mnuStyle tlbStyle - Style T
Color mnuColor N/A C
Highlight Color |mnuHighlightColoiN/A C

. Note

A

The Color and Highlight Color submenus should only be used when
customizing the Color and Highlight Color menu items. For more
information on customizing the color choosers in EditLive! for XML see the
section on Customizing the Color Choosers.

EditLive! for XML Interface Command Collection

Menu and Toolbar Button Items

This collection of interface commands can be used within menus and toolbars in
EditLive! for XML. The items, their corresponding function, tool tip and menu text,
mnemonic, shortcuts, images and their associated value for the relevant name
attribute are listed below:

iJ Note

It is recommended that items, such as Save As..., are not used within
toolbars as they do not have a default image associated with them.

Function XML Name Menu or |[Shortcut Image Mnemonic
Attribute Tool Tip
Text
Create a new New New CTRL+N Fi N
file.
Open an existing |Open Open... CTRL+O | _j 0O
file on the local
machine.

95

Customizing EditLive! for XML

Save a file to the |Save Save CTRL+S ||

local machine.

Save a file to the |SaveAs Save As... CTRL+ N/A

local machine

with a different SHIFT+S

name.

Undo thelast |Undo Undo CTRL+Z |=y

editor action.

Redo the last Redo Redo CTRL+Y |(=

undone editor

action.

Cut the Cut Cut CTRL+X | M,

selection.

Copy the Copy Copy CTRL+C =4

selection.

Paste. Paste Paste CTRL+V -:]
s

Select all editor |SelectAll Select All CTRL+A |N/A

content.

Find text in the |Find Find... CTRL+F | i

editor.

Insert a HLink Hyperlink... |CTRL+K %

hyperlink.

Insert a HRule Horizontal |N/A =

horizontal line. Line

Insert a symbol. |Symbol Symbol... N/A 57

Insert a Bookmark Bookmark... [N/A *

bookmark.

Insert an image |ImageLocal Local N/A N/A

96

Customizing EditLive! for XML

from the local Image...

machine.

Insert an image |ImageServer Server N/A E I

from the server Image

image library. Library...

Insert a HTML |InsertComment Insert N/A N/A |[N/A

comment. Comment...

Insert a table. |InsTable Insert N/A ==z I
Table...

Insert arowin |InsRow Insert Row |N/A N/A

the current =

table.

Insert a column |InsCol Insert N/A N/A

in the current Column , E.

table.

Insert rows or |InsRowCol Insert Row |N/A N/A |R

columns in the or Column...

table.

Insert a cell in a |InsCell Insert Cell |N/A N/A |E

table.

Delete a row DelRow Delete Row |N/A _Ii-p D

from a table.

Delete a column |DelCol Delete N/A Lb'- C

from a table. Column

Delete a cell DelCell Delete Cell |N/A N/A |L

from a table.

Splitacellina |Split Split Cell... |N/A i S

table.

Merge cellsina |Merge Merge Cells [N/A A M

table.

Customizing EditLive! for XML

Edit the current |PropCell Cell N/A N/A |R
cell's properties. Properties...

Edit the selected |PropRow Row N/A N/A |N/A
row's properties. Properties...

Edit the selected |PropCol Column N/A N/A |N/A
column's Properties...

properties.

Edit the current |PropTable Table N/A N/A |T
table's Properties...

properties.

Toggle table Gridlines Show/Hide |N/A iszz| G
gridlines on and Gridlines

off.

Run the spell Spelling Spelling... |F7 ﬁ S
checker.

Perform a word |WordCount Word N/A = w
count on the Count...

document.

The text color |Color Color N/A Ig C
selector.

The text HighlightColor Highlight |N/A £5 C
highlight color Color

selector.

Bold text. Bold Bold CTRL+B | B B
Italic text. Italic Italic CTRL+I | F I
Underline text. |Underline Underline |CTRL+U | U U
Strikethrough |Strike StrikethroughiN/A AR S
text.

o8

Customizing EditLive! for XML

list.

Remove RemoveFormatting |Remove N/A g % R
formatting. Formatting

Increase the IncreaseIndent Increase N/A iE N
paragraph or list Indent

indent.

Decrease the Decreaselndent Decrease N/A gz D
paragraph or list Indent

indent.

Edit the PropList List N/A N/A |N/A
properties of a Properties...

EditLive! for XML Specific Menu and Toolbar Button Items

The following menu and toolbar items can only be added to the interface within
EditLive! for XML.

Function XML Name Menuor (Shortcut Image | Mnemonic
Attribute Tool Tip
Text
Insert a new xmlInsertBefore Insert N/A 5 N/A
XML element Before
before the
current element.
This is useful
within sections
with repeating
elements.
Insert a new xmlInsertAfter Insert After |[N/A ﬂ N/A

XML element
after the current
element. This is
useful within
sections with
repeating
elements.

99

Customizing EditLive! for XML

Insert a new xmlInsertAtCurrent |Insert Into |N/A E-'_FI N/A
XML element at
the location of
the current
element. This is
useful within
sections with

repeating

elements.

Convert the xmlConvert Convert N/A =§=‘ N/A
current XML Element

element into
another, valid,
XML element.

Add an attribute [xmlAddAttribute Add N/A N/A |[N/A
to the selected Attribute
XML element.
Only valid
elements can be
added.

Move the xmlMoveUp Move Up N/A & N/A
current XML
element up one
position within
the document.
This is useful
within sections
with repeating
elements.

Move the xmlMoveDown Move Down |[N/A & N/A
current XML
element down
one position
within the
document. This
is useful within
sections with
repeating
elements.

100

Customizing EditLive! for XML

Remove the
current XML
element. This is
useful within
sections with
repeating
elements.

xmlRemove

Remove

N/A

N/A

Visual Designer Specific Menu and Shortcut Menu Items

The following items can only be placed on the menus and shortcut menu of the Visual
Designer. These menu items must be placed within the <designerMenuItem> element
of the configuration file.

Function XML Name Menuor (Shortcut Image | Mnemonic
Attribute Tool Tip
Text
Edit the ControlProperties |Control N/A N/A |N/A
properties of the Properties...
currently
selected form
control.
Export the ExportXSLT Export N/A N/A |N/A
current view as StyleSheet...
an XML
StyleSheet
(XSL).
Export the data |ExportXSD Select All N/A N/A |N/A
model as an
XML Schema
Document
(XSD).

Menu Item and Toolbar Button Groups

This collection of interface commands can be used only within menus and toolbars in
EditLive! for XML. These interface items are added as a group of buttons or menu
items within EditLive! for XML. The activation of buttons and menu items in the

Customizing EditLive! for XML

groups is mutually exclusive, for example, the left alignment item cannot be activated
at the same time as the center or right alignment buttons. The items, their
corresponding function, tool tip and menu text, mnemonic, shortcuts, images and
their associated value for the relevant name attribute of the group are listed below:

. Note

A

These groups cannot be added to the shortcut or element menus within
EditLive! for XML.

Function XML Name Menu or Shortcut |[Image |Mnemonic
Attribute Tool Tip
Text
View the Design View |N/A N/A |D
document in
Design mode
(WYSIWYG
de).
mode) SourceView
View and edit HTML View |N/A N/A |H
the HTML
source for the
document.
View the applet Browser View [N/A N/A |B
in the browser.
) FrameView))
View the applet Window View |[N/A N/A |W
in a separate
window.

102

Customizing EditLive! for XML

Insert an Ordered List |[N/A = 0]
ordered list or

change an
unordered list to
an ordered list.

List
Insert an 18 Unordered N/A — T

unordered list or List —
change an
ordered list to
an unordered
list.

Set left Align Left CTRL+L
alignment.

I
=

Set center . Align Center |CTRL+E
. Align
alignment.

i
a

Set right Align Right |CTRL+R
alignment.

il
=

xl-i
0p]

Superscript text. Superscript |N/A

Script
Subscript text. Subscript N/A

X
@)

Customizing Available Items

The interface items available through the standard EditLive! for XML interface
command collection can be customized to allow the associated text, mnemonic and
image to be altered. These customizations can be performed on menu and toolbar
items by setting the text, imageURL and mnemonic attributes of the <menuItem>
and <shrtMenuItem> and the text and imageURL attributes of the
<toolbarButton> element.

iJ Note

The properties of menu item and toolbar button groups cannot be
customized.

The following example customizes the New menu item to use the text Create New,

103

Customizing EditLive! for XML

the image customImage.gif and the mnemonic c.

<editLive>
<menuBar>

<menu name="g&File">
<menultem
name="New"
text="Create New"
imageURL="customImage.gif"
mnemonic="c"

/>
</menu>
</menuBar>

</editLive>

Customizing the Color Choosers

The color choosers for both the Color and Hightlight Color menu and toolbar items
can be customized to include only a specific set of predefined colors. The More
Colors... item will also be available in addition to any predefined colors.

In order to customize the Color or Highlight Color menu items the relevant
<menulItem> element must be replaced with a <submenu> element with the same name
attribute. Each color should then be listed as a separate <menuItem> element. For each
color <menuTtem> element the name attribute should provide the HTML color value
(either as a hexidecimal color value or reserved color key word, e.g. #FF0000 or red).
The text attribute for each color <menuTtem> element should provide a text
description of the color.

Example 8.1. Custom Color Chooser in a Submenu

The following example creates a custom color chooser in a submenu to customize the
Color menu item. The submenu will contain the colors Red, Blue and Green.

<editLive>

<menuBar>

<menu name="F&ormat">

104

Customizing EditLive! for XML

<submenu name="mnuColor">
<menultem name="#FF0000" text="Red" />
<menultem name="blue" text="Blue" />
<menultem name="green" text="Green" />
</submenu>

</menu>
</menuBar>

</editLive>

In order to customize the Color or Highlight Color toolbar items the relevant
<toolbarButton> element must be replaced with a <toolbarComboBox> element with
the same name attribute. Each color should then be listed as a separate
<comboBoxItem> element. For each color <comboBoxItem> element the name attribute
should provide the HTML color value (either as a hexidecimal color value or reserved
color key word, e.g. #FF0000 or red). The text attribute for each color
<comboBoxItem> element should provide a text description of the color.

Example 8.2. Custom Color Chooser in a Toolbar

The following example creates a custom color chooser in a submenu to customize the
Highlight Color toolbar button. The drop down will contain the colors Red, Blue
and Green.

<editLive>
<toolbars>
<toolbar name="format">
<toolbarComboBox name="tlbHighlightColor">
<comboBoxItem name="#FF0000" text="Red" />
<comboBoxItem name="blue" text="Blue" />
<comboBoxItem name="green" text="Green" />
</toolbarComboBox>
</toolbar>

</toolbars>

105

Customizing EditLive! for XML

</editLive>

Creating New Items

Custom items can be added to the EditLive! for XML menus and toolbars. This gives
the developer greater flexibility when integrating EditLive! for XML in existing
systems. It allows developers to complement the functionality of EditLive! for XML
with existing JavaScript functions and also to extend the menus and toolbars of the
EditLive! for XML applet to include custom functionality.

EditLive! for XML allows for the specification of custom menu items, custom toolbar
buttons and custom toolbar combo boxes, this can be done with the
<customMenultem>, <customToolbarButton> and
<customToolbarComboBox> elements respectively.

When creating custom items to use with EditLive! for XML setting the xhtmlonly
attibute to true ensures that the custom interface item will only be enabled whilst the
cursor is within an XHTML section.

For more information on how to use custom items in EditLive! for XML please see the
article on Custom Menu and Toolbar Items for EditLive! for XML.

Tab Views

EditLive! for XML can be configured to use a tabbed view which allows users to more
intuitively switch between different views. These tabs can be placed on the top or
bottom of the EditLive! for XML editing area, they can also be removed completely.
The configuration of the tabbed view for EditLive! for XML is achieved via the
tabPlacement attribute of the <wysiwygEditor> element.

For example, the following XML would place the view tabs at the top of the EditLive!
for XML editing pane.

<editLive>
<wysiwygEditor tabPlacement="top">

</editLive>

106

Customizing EditLive! for XML

The tabbed view settings for use with EditLive! for XML and their associated value for
the <wysiwygEditor> tabPlacement attribute are listed below.

Example Image Function XML tabPlacement
Attribute

Place tabs at the top of the top

editing pane.
Design I Code I Place tabs at the bottom of [bottom
: the editing pane.
Remove tabs. off

Removing the Menu Bar and Toolbars

Both the menu bar and either of the toolbars of EditLive! for XML may be removed. In
order to display EditLive! for XML without any toolbars ensure that there are no
<toolbar> elements within the configuration file.

To remove the menu bar ensure that the <menuBar>element is empty (i.e. it has no
child elements) and ensure that the showAboutMenu attribute of the
<menuBar>element is set to false.

Limiting the Functionality of EditLive! for XML

Removing specific functionality from EditLive! for XML is achieved by removing the
corresponding menu and/or toolbar buttons from the EditLive! for XML interface.
When the item is not included in the XML configuration then the item will not appear
on the menu or toolbar and, in most cases, the shortcut key for the item will be
disabled.

It should be noted that the shortcut keys for the Cut, Copy, Paste, Bold, Italic and
Underline actions will always be enabled. This is independent of the associated
menu items and toolbar buttons. Thus, the shortcut keys for these functions will still
be functional even if the associated menu items or toolbar buttons are removed.

Summary

The interface for EditLive! for XML is highly customizable. Through the EditLive! for
XML configuration process developers gain the flexibility to make the interface for
EditLive! for XML as simple or as complex as they wish. EditLive! for XML is supplied

107

Customizing EditLive! for XML

with a standard complement of menu and toolbar items providing editor functionality.
These items are listed in the above sections of this document along with all the
relevant information pertaining to each item.

Furthermore, EditLive! for XML gives the developer the ability to create custom
functionality which can be accessed through custom menu and toolbar items. This can
be used to complement the functionality of the EditLive! for XML applet with the
developers own custom functions and macros.

Finally, through the exclusion of relevant menu and toolbar items the developer can
limit the functionality of the EditLive! for XML applet, thus preventing end users from
accessing functionality which the developer does not wish them to.

Custom Menu and Toolbar Items for EditLive! for XML

Introduction

Ephox EditLive! for XML allows for the developer to specify custom items on the
toolbars and menus. These custom items can be used to insert specific HTML source
or a hyperlink at the cursor location, it can also be used to raise a JavaScript event or
cause EditLive! for XML to POST its content to a specific URL. For information on
how to configure EditLive! for XML to include custom menu and toolbar items see the
<customToolbarButton>, <customToolbarComboBox> and
<customMenultem> elements in the EditLive! for XML Configuration Reference.

Within EditLive! for XML custom menu items and toolbar buttons which insert
hyperlinks or HTML at the cursor will function only within XHTML sections. Those
custom functions which use the raise event functionality will function throughout the
editor.

Custom Toolbar Options

There are two types of custom items which can be added to the EditLive! for XML
toolbar, these are custom toolbar buttons and custom toolbar combo items. Custom
toolbar buttons appear as buttons within the toolbar and when configuring these
within the EditLive! for XML configuration file a URL which corresponds to an image
for the button must be included. This image is used on the button when it is placed in
the toolbar. Custom combo boxes appear in the same format as the typeface, style and
font size toolbar items. When configuring custom combo boxes for use within
EditLive! for XML each individual item within the combo box must be configured via
the <customComboBoxItem >element in the EditLive! for XML configuration file.

Examples

108

Customizing EditLive! for XML

The following example demonstrates how to define a custom toolbar button for use
within EditLive! for XML on the Command Toolbar. The button defined in this

example will insert HTML to insert at the cursor, note that the value in the example
below is URL encoded.

Example 8.3. Configuring a Custom Toolbar Button

<editLive>

<toolbars>
<toolbar name="command">
<customToolbarButton
name="customButtonl"
text="Custom Button"
imageURL="http://www.someserver.com/imagel6x16.gif"
action="insertHTMLAtCursor"
value="%$3Cp%3EHTML%20t0%20insert%3C/p%3E"
/>
</toolbar>
</toolbars>

</editLive>

The following example demonstrates how to define a custom combo box item for use
within a custom toolbar combo box which exists on the EditLive! for XML
Command Toolbar. The combo box item defined in this example will insert HTML
to insert at the cursor, note that the value in the example below is URL encoded.

Example 8.4. Configuring a Custom Toolbar Combo Box

<editLive>

<toolbars>
<toolbar name="command">
<customToolbarComboBox name="customCombo">

<customComboBoxItem
name="customComboIteml"
text="Custom Combo Item"
action="insertHTMLAtCursor"
value="%$3Cp%3EHTML%20t0%201insert%3C/p%3E"

/>

</customToolbarComboBox>

109

Customizing EditLive! for XML

</toolbar>
</toolbars>

</editLive>

Custom Menu Items

Custom menu items in EditLive! for XML can only be of one format. Custom menu
items can only be of a single layered depth (i.e. they cannot include submenus).
Custom menu items can be added to any of the menus in EditLive! for XML via the
<customMenultem >in the EditLive! for XML configuration file.

Example
The following example demonstrates how to define a custom menu item for use

within EditLive! for XML. The menu item defined in this example will insert HTMI. to
insert at the cursor, note that the value in the example below is URL encoded.

Example 8.5. Configuring a Custom Menu Item

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="Custom Item"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E"

/>

</menu>
</menuBar>

</editLive>

Inserting HTML and Hyperlinks at the Cursor

110

Customizing EditLive! for XML

Custom toolbar buttons and combo boxes, and custom menu items can be configured
within EditLive! for XML to insert specific HTML source or hyperlinks at the location
of the cursor. When configuring custom toolbar buttons, combo boxes and menu items
within EditLive! for XML to insert HTML at the cursor the HTML source to be
inserted at the cursor needs to be specified within the EditLive! for XML configuration
file. When declaring the HTML to insert in the XML configuration file the HTML
needs to be URL encoded [http://www.ietf.org/rfc/rfc2396.txt?number=2396].

The insert hyperlink at cursor custom functionality in EditLive! for XML requires that
the user select text before using the relevant custom item. Upon using the relevant
custom item the selected text will become a hyperlink linking to the address specified
in the configuration of the custom item.

The HTML or hyperlink to insert at the location of the cursor is specified via the value
attribute of the related <customComboBoxItem>, <customToolbarButton> or
<customMenultem> element in the XML configuration file.

Examples

The following example demonstrates how to define a custom menu item which uses
the insertHTMLAtCursor action for use within EditLive! for XML. The menu item
defined in this example will insert HTML to insert at the cursor, note that the value
in the example below is URL encoded.

Example 8.6. Configuring a Custom Item to Insert HTML at the Cursor

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="Custom Item"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E"

/>

</menu>
</menuBar>

</editLive>

111

http://www.ietf.org/rfc/rfc2396.txt?number=2396

Customizing EditLive! for XML

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="Custom Item"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E"

/>

</menu>
</menuBar>

</editLive>

The following example demonstrates how to define a custom menu item which uses
the insertHyperlinkAtCursor action for use within EditLive! for XML. The menu
item defined in this example will insert the URL http: //www.ephox.com at the
cursor.

Example 8.7. Configuring a Custom Item to Insert a Hyperlink at the Cursor

<editLive>
<menuBar>

<menu>

<customMenultem
name="customItem2"
text="Ephox"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="insertHyperlinkAtCursor"
value="http://www.ephox.com"

/>

</menu>
</menuBar>

</editLive>

112

Customizing EditLive! for XML

Enabling Custom Items Only in XHTML Sections

To ensure a custom interface item is only available whilst the cursor is placed within
an XHTML section the xhtmlonly attribute of the relevant
<customToolbarButton>, <customToolbarComboBox> or
<customMenultem > element must be set to true.

Raising a JavaScript Event

Custom toolbar and menu items in EditLive! for XML can be configured to raise
JavaScript events. JavaScript events raised through EditLive! for XML are required to
be defined either in the page in which EditLive! for XML is embedded or must be
defined in a file which is included in the page in which EditLive! for XML is
embedded.

When raising a JavaScript event from EditLive! for XML the value attribute of the
related <customComboBoxItem >, <customToolbarButton> or
<customMenultem> element in the XML configuration file should specify the
JavaScript function which is to be called.

Example
The following example demonstrates how to define a custom menu item which uses

the raiseEvent action for use within EditLive! for XML. The menu item defined in
this example will call the JavaScript function called eventRrRaised.

Example 8.8. Configuring a Custom Item to Use the raiseEvent Functionality

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="Raise Event"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="raiseEvent"
value="eventRaised"

/>

</menu>
</menuBar>

</editLive>

113

Customizing EditLive! for XML

Using Custom Properties Dialogs

The custom properties dialog functionality of EditLive! for XML allows developers to
retrieve and set the attributes for a particular element within EditLive! for XML.
Developers can use this functionality with their own JavaScript functions to
manipulate the attributes of specific tags.

The custom properties dialogs should be linked to from a custom toolbar button or
custom menu item. For more information on how to configure EditLive! for XML to
include custom menu and toolbar items see the <customToolbarButton> and
<customMenultem > elements in the EditLive! for XML Configuration Reference.

Example 8.9. Configuring a Custom Item to Retrieve the Properties of a Tag

<editLive>
<menuBar>

<menu>
<customMenultem
name="customPropertiesl"
text="Custom td Properties"
action="customPropertiesDialog"
value="customTDFunction" enableintag="td"
/>

</menu>
</menuBar>

</editLive>

The JavaScript function corresponding to this custom menu item should be of the
following form:

function customTDFunction (properties) {

//Content of function goes here

Where the parameter properties is a string.

114

Customizing EditLive! for XML

POSTing the Content of EditLive! for XML

Custom toolbar and menu items in EditLive! for XML can be configured to cause
EditLive! for XML to POST its content to a specific URL. When using the
PostDocument function the value attribute of the custom item is used to pass
several parameters to EditLive! for XML. These parameters are delimited by the string

##ephox##. Thus, the string

editlive field##ephox##http://someserver/post/POSTacceptor.aspx
contains two parameters editlive fieldand

http://someserver/post/POSTacceptor.aspx.

The value attribute for the PostDocument function may contain the following

parameters.

POST Field

POST Acceptor URL

Response Processing

JavaScript Callback Function

The name of the field in the HTTP POST that
EditLive! for XML uses to POST its content.

This parameter is required.

The URL for the POST acceptor that EditLive! for
XML is to POST to.

The parameter is required.

The operation that EditLive! for XML is to perform
with the HTTP response from the POST acceptor
script.

The parameter can have the following values:

+ saveToDisk - Present the user with a save file
dialog with which they can save the response to
the local machine.

e callback - Pass the entire content of the HTTP
response to a specified JavaScript callback
function for processing.

This parameter is required.

The name of the JavaScript callback function to use
for processing the response. This parameter should
only be used if the repsonse processing is set to
callback.

115

Customizing EditLive! for XML

Note

[:.

The parameters must appear in the value attribute in the the order POST
field, POST Acceptor URL, Response Processing, JavaScript Callback
Function. Thus, the content of the value attribute may appear as follows:

For saving to disk:

POST field##ephox##http://someserver/postacceptor. jsp##ephox##
saveToDisk

POST field##ephox##http://someserver/postacceptor. jsph#tephox#i#
callback##ephox##JSFunctionName

Where posT fieldis the name of the field the content is to be POSTed to,
http://someserver/postacceptor. jspis the URL for the POST
acceptor script and JsFunctionName is the name of the JavaScript function
to be used as a call back.

Example

The following example demonstrates how to define a custom menu item which uses
the PostDocument action for use within EditLive! for XML. The menu item defined
in this example will POST the content in the field edit1live field to the script at
http://someserver/post/POSTacceptor.aspx upon completion of the POST the
content of the HTTP response will be passed to the JavaScript callback function
JSFunction.

Example 8.10. Configuring a Custom Item to Use the PostDocument Functionality

<editLive>
<menuBar>

<menu>

<customMenultem
name="customIteml"
text="POST Content"
imageURL="http://www.someserver.com/imagel6xl6.gif"
action="PostDocument"
value="editlive field##ephox##http://someserver/post/POSTacceptor.aspx

##ephox##callback##ephox##ISFunction"
/>

</menu>

116

Customizing EditLive! for XML

</menuBar>

</editLive>

Summary

The developer can create extended customized functionality in EditLive! for XML via
the custom toolbar and menu items. These items can be configured to insert a specific
hyperlink or specific HTML at the cursor. They can also be configured to raise specific
JavaScript events.

See Also

Raising a JavaScript Event from Ephox EditLive! for XML

« Custom Properties Dialogs for EditLive! for XML

» Submitting EditLive! for XML Content Directly Via HTTP POST
« <customToolbarButton>

+ <customToolbarComboBox>

 <customMenultem>

« URL encoding (RFC 2396) [http://www.ietf.org/rfc/rfc2396.txt?number=2396]

117

http://www.ietf.org/rfc/rfc2396.txt?number=2396

Chapter 9. Using JavaScript for
Customization

Custom Properties Dialogs for EditLive! for XML

Introduction

Ephox EditLive! for XML allows for developers to specify custom properties dialogs
for use with specific tags. The custom properties dialog functionality of EditLive! for
XML allows developers to retrieve and set the attributes for a particular element
within EditLive! for XML. Developers can use this functionality with their own
JavaScript functions to manipulate the attributes of specific tags.

The custom properties dialogs should be linked to from a custom toolbar button or
custom menu item. For more information on how to configure EditLive! for XML to
include custom menu and toolbar items see the <customToolbarButton> and
<customMenultem> elements in the EditLive! for XML Configuration Reference.

When to Use Custom Properties Dialogs

The custom properties dialogs functionality of EditLive! for XML can be used by
developers when they wish to extend and customize the functionality of EditLive! for
XML in respect to a specific tag. In this way developers may provide functionality
which complements EditLive! for XML's base functionality.

. Note
A
Custom properties dialogs in EditLive! for XML will function only within
XHTML sections of the document.

Each menu or toolbar item related to a custom properties dialog is valid for use with a
single tag as specified via the enableintag attribute of the relevant
<customToolbarButton> or <customMenultem> element. Thus, developers
can create custom dialogs which pertain to specific tags. This is useful in providing
new dialogs for HTML elements such as which are not available for direct
interaction within EditLive! for XML, to access the properties of custom or XML tags
such as <custom>, or to replace or complement an existing EditLive! for XML dialog,
such as the Image Properties dialog which corresponds with the tag.

118

Using JavaScript for Customization

Interacting with EditLive! for XML and Custom Properties Dialogs

Interacting between EditLive! for XML and custom properties dialogs occurs via a
JavaScript API. This API provides access to a list of relevant properties to a JavaScript
function when a custom properties dialog is called from a toolbar or menu item within
EditLive! for XML. The SetProperties function allows properties returned to
EditLive! for XML.

JavaScript API for Custom Properties

Retrieving the Current Properties

In order to implement a custom properties dialog an associated toolbar or menu item
must be created. This can be done within the XML configuration file for EditLive! for
XML. The example below demonstrates how to create a custom menu item which can
be used to access the properties for a <td> element. The example below calls the
JavaScript function customTDFunction. This JavaScript function is supplied with a
string that contains the name (or type) of the tag, a number which identifies the
particular instance of the tag within the EditLive! for XML document and the existing
attributes of the relevant tag. For more information on how to implement a custom
properties dialog please see the Custom Properties Dialog function in the runtime API.

Example 9.1. Configuring a Custom Item to Retrieve the Properties of a Tag

<editLive>
<menuBar>

<menu>
<customMenultem
name="customPropertiesl"
text="Custom td Properties"
action="customPropertiesDialog"
value="customTDFunction" enableintag="td"
/>

</menu>
</menuBar>

</editLive>

The JavaScript function corresponding to this custom menu item should be of the
following form:

119

Using JavaScript for Customization

function customTDFunction (properties) {

//Content of function goes here

Where the parameter properties is a string.

Setting New Properties

In order to return the changed properties to EditLive! for XML the SetProperties
function of the JavaScript runtime API must be used. This function takes a single
argument which is a string representing the name-value pairs for the relevant
attributes. In order to correctly set the properties of the relevant tag it should be
ensured that the ephoxTagID attribute is not altered by the functions external to
EditLive! for XML. Also, the tag attribute must be present and the value of this
attribute must correspond to the name of the tag (i.e. "span" for a tag).

Example 9.2. Using the SetProperties Function to Set Attributes

The following example sets the properties for a tag in the instance of EditLive! for
XML named ELApplet1 with the values stored in the newProperties string:

function makeChanges (paramOne, paramTwo) {

//Content of function goes here
ELAppletl js.SetProperties (newProperties);

When constructing the string variable to use with the SetProperties function care
should be taken to ensure that the ephoxTagID and tag attributes are correct.

The ephoxTagID Attribute

The ephoxTagID attribute is used by EditLive! for XML to maintain a reference to
the relevant tag inside EditLive! for XML. This attribute should not be changed when
editing the properties of the tag. If the name or value of this attribute is altered in any
way the custom properties dialog will not function correctly.

120

Using JavaScript for Customization

The tag Attribute

The value of the attribute with the name of tag designates the type of tag for which the
properties are relevant. Changing the value of the tag attribute will change the tag type
in EditLive! for XML. Thus, if the value of a tag attribute with the value td was
changed to th then the relevant table cell would be changed from a normal (td) cell to
a table header (th) cell.

Standalone Attributes

The tag for which the custom properties dialog applies may contain standalone
attributes. These are attributes which have only a name and do not exist as a
name-value pairing. For example, the NowraP attribute of the <td> tag. EditLive! for
XML outputs these attributes as a name-value pairing where the name and value are
the same. In order to remove such attributes from the properties string both the
relevant name and value strings should be removed from the properties string. In
order to add such an attribute to the properties string a name-value pair in which the
name and value are the same (e.g. NOwrRAP="NOWRAP") should be added to the
properties string.

Summary

EditLive! for XML includes functionality allowing developers to create their own
custom properties dialogs for specific tags. This allows developers to complement and
extend the existing functionality of EditLive! for XML with custom functions. When
creating custom dialogs developers interact with EditLive! for XML via a JavaScript
API. When interacting with the applet in this fashion it is important to remember
several factors including the details of the ephoxTagID and tag attributes.

See Also

e Custom Menu and Toolbar Items for EditLive! for XML
« <customToolbarButton>
« <customMenultem>

« URL encoding (RFC 2396) [http://www.ietf.org/rfc/rfc2396.txt?number=2396]

Raising a JavaScript Event from Ephox EditLive! for XML

Introduction

121

http://www.ietf.org/rfc/rfc2396.txt?number=2396

Using JavaScript for Customization

Ephox EditLive! for XML custom menu commands and custom toolbar buttons may
be configured so that they raise a JavaScript event. This allows developers to
complement the functionality of EditLive! for XML through the edition of their own
JavaScript functions. Allowing for greater flexibility in the use of the EditLive! for
XML applet.

Configuring EditLive! for XML to Raise JavaScript Events

The raising of JavaScript events from within EditLive! for XML can be associated with
either a custom menu command or a custom toolbar button. In order to create a
custom menu command or toolbar button with this functionality the EditLive! for
XML configuration file must contain the relevant settings. For more information on
the EditLive! configuration file see the Configuration Documentation.

Examples

The following example demonstrates how to configure an EditLive! for XML custom
toolbar button to raise a JavaScript function called javaScriptFunction.

<editLive>

<toolbars>
<toolbar name="command">
<customToolbarButton
name="customButtonl"
text="Raise Event Button"
imageURL="http://www.someserver.com/image20x20.gif"
action="raiseEvent"
value="javaScriptFunction"
/>
</toolbar>
</toolbars>

</editLive>

The following example demonstrates how to configure an EditLive! for XML custom
menu command to raise a JavaScript function called javaScriptFunction.

<editLive>

<menuBar>
<menu>
<customMenultem

122

Using JavaScript for Customization

name="customIteml"

text="Raise Event Command"
imageURL="http://www.someserver.com/image20x20.gif"
action="raiseEvent"

value="javaScriptFunction"

/>

</menu>

</menuBar>

</editLive>

For more information on each of the XML attributes present in these tags please see
the <customToolbarButton> or <customMenultem > element documentation.

Using JavaScript Functions with Raise Event

In order to be able to use a JavaScript function with the EditLive! for XML raise event
functionality the JavaScript function must included or defined in the same page as the
instance of EditLive! for XML. The JavaScript function used should have no
parameters.

Advanced Custom Functionality with Raise Event and EditLive! for

XML

The raise event functionality of EditLive! for XML can be used in a variety of situations
to complement the existing functionality of the EditLive! for XML applet. For
example, if a custom toolbar or menu item within EditLive! for XML was to call a
JavaScript function which, in turn, called the window.open() function the new
window created, with the use of some program scripting, could be used to receive extra
user input. Thus, a user may be able to select an image or file from a list presented in a
new window, submit their selection back to another function in the parent page (the
page in which the EditLive! for XML applet is embedded) and have the result of their
selection placed into EditLive! for XML via the InsertHTMLAtCursor EditLive! for
XML JavaScript API function.

Summary

Through the use of the raise event functionality of EditLive! for XML the functionality
of the EditLive! for XML applet can be complemented by the developer through the
use of JavaScript functions. This affords the developer a large degree of flexibility
when using EditLive! for XML within their applications.

123

Using JavaScript for Customization

See Also

« <customToolbarButton>

e <customMenultem>

124

Chapter 10. Image Upload
Using HTTP for Image Upload in Ephox EditLive! for XML

Overview

When inserting and uploading local images to a remote server, Ephox EditLive! for
XML uses the HTTP multipart form-data protocol.

The <httpImageUpload> element of the XML configuration file contains the
configuration information for the HTTP Image Upload functionality.

Why use HTTP?

Using the HTTP POST method to insert and upload images offers a secure way of
allowing end users to interact with the remote server that the images are to be stored
on.

Requirements for HTTP Image Upload

In order to upload local images to the remote server via HTTP, you will need a
server-side image upload handler script that accepts the images on the server and
stores them in the correct directory. This script is the same script that would be used
for uploading any file to the server via the HTTP POST method. For example, when
you use a file input element (i.e. <INPUT type="file">), the script specified in the
AcTION attribute of the form element is used to upload the file to the server. This is the
same script specified in EditLive! for XML to upload local images inserted into
EditLive! for XML to the remote server.

EditLive! for XML HTTP Image Upload Configuration

The HTTP image upload configuration requires a URL corresponding to the image
upload handler script and also a base property to use with image URLs. These
properties can be set via the href and base attributes of the <httpImageUpload>
element respectively. They can also be configured using the Configuration Tool. These
settings are found on the Image Settings tab under the HTTP Image Upload
settings.

HTTP Image Upload - href

This setting defines the location on the Web server of the script which handles image

125

Image Upload

uploads.

A

Note

Relative URLs may be used. In this case the URL will be relative to the
location of the page in which EditLive! for XML is embedded.

HTTP Image Upload - base

You should enter in this field the absolute URL for where the images are to be
uploaded. The images can then be found by directing your browser to the images
directory of the URL you supplied, after they have been uploaded.
- Note

A1)
Relative URLs may be used. In this case the URL should be relative to the
page which will be used to display the finished documents. For the images
to be displayed correctly in the pages in which EditLive! for XML is

embedded, the relative URL should also be the correct location relative to
the pages in which EditLive! for XML is embedded.

Example 10.1. HTTP Image Upload Absolute BASE URL Configuration Example

In this example the location for the image upload script is

http://www.yourserver.com/scripts/upload.jsp

The uploaded images can be found in a directory with the URL

http://www.yourserver.com/userimages/

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://www.yourserver.com/userimages/"
href="http://www.yourserver.com/scripts/uploadhandler.asp"

/>

</images>
</mediaSettings>

</editLive>

126

Image Upload

Example 10.2. HTTP Image Upload Relative BASE URL Configuration Example

If the location of the display page directory is:

http://yourserver.com/editlivejava/startcms/site

The location of the directory containing the pages with EditLive! for XML embedded
in them is: http://yourserver.com/editlivejava/startcms/cms

Then the correct relative base URL setting for both the viewing and editing pages to
function correctly with images would be: . . /site/images

The upload handler script is located at

http://yourserver.com/scripts/uploadhander.asp

We recommend using absolute URLs when possible, as it is less likely to lead to
confusion.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="../site/images"
href="http://yourserver.com/scripts/uploadhandler.asp"

/>

</images>
</mediaSettings>

</editLive>

When are Images Actually Uploaded?

Images are uploaded when the contents of Ephox EditLive! for XML are submitted.
This occurs when the form which contains Ephox EditLive! for XML has its submit
method called.

What Form Field are Images Uploaded In?

Local images which are uploaded to the server by EditLive! for XML are placed within
a form field with the name image. When implementing an upload acceptor script
specifically to receive image files from EditLive! for XML the script should be made to

127

Image Upload

accept files submitted within the image field.

Dynamically Setting the Image URL

It is possible to dynamically assign the URL for images embedded within the content
as they are uploaded. This functionality is achieved via the POST acceptor for images.
If the image POST acceptor returns a string containing a URL the URL is inserted into
the document source code as the URL for the image. In this way it is possible to
dynamically assign the directory images are uploaded to without having to
dynamically generate the configuration file.

For this functionality to operate correctly the relevant upload acceptor script must
only return a single string with the URL corresponding to the location for the
uploaded image.

When setting the image URL in this manner the URL returned by the POST acceptor
script to EditLive! for XML takes precedence over the base setting in the XML
configuration file.

i | Note

The URL returned by the POST acceptor must be exactly the URL to be
used for the image in EditLive! for Java.

Example Image Upload Scripts

EditLive! for XML is packaged with sample upload scripts for ASP, JSP and ASP.NET.
The source for these scripts can be found in the
SDK_INSTALL/webfolder/uploadscripts/ directory where SDK INSTALL represents
the directory to where the EditLive! for XML SDXK is installed.

Documentation is also available for the upload acceptor scripts:

« ASP Upload Script
« ASP.NET Upload Script

« JSP Upload Script

Common Problems

There are a number of problems that may occur while attempting to use HTTP Image
Upload. These can be complicated and are chiefly to do with the settings on your

128

Image Upload

server of choice.
« Sever side settings - ensure that the image upload script exists in a directory in
which scripts can be executed.

« File system permissions - ensure that the file permissions of the directory in which
images are to be placed has write and read permissions set.

See Also

« Example ASP Upload Script
« Example ASP.NET Upload Script

« Example JSP Upload Script

ASP HTTP Image Upload Handler Script

Summary

This article provides a sample script, written using Active Server Pages and VBScript,
to upload images via the HTTP POST method. Instructions on how it can be tailored

for use in your Web applications are also included. You will need to set this facility if

you would like to be able to upload local images to the server.

Defining the location of the image upload handler script

The location of the image upload handler script must be defined within the XML
configuration file. This setting is configured via the href attribute of the
<httpImageUpload> element of the configuration file. To use this example script the
href attribute should point to the location of this script on the server.

Defining the location of the image upload directory

This example script uploads images to the directory specified by the imageDir
variable. In order for images to function correctly within EditLive! for XML the base
attribute of the <httpImageUpload> element must reflect the location of the directory
where images on the Web server.

An example image upload handler script

129

Image Upload

Ephox has written a sample image upload handler script using Active Server Pages
and VBScript. This script can be found at
SDK_INSTALL\webfolder\uploadscripts\asp\fileUpload.asp\Nhere
SDK_INSTALL represents the location where the EditLive! for XML SDK is installed.

Below are the steps required to use the ASP image upload handler in your own Web
application.

For image upload, one line of code in the fileUpload.asp file must be changed.

This line of code specifies the location where you wish image files to be uploaded
to. If the location of the upload acceptor script was
http://www.yourserver.com/scripts/fileUpload.asp then setting the
imageDir variable to . ./images would upload the images to a directory with the
URL http://www.yourserver.com/images/.

Dim imageDir

imageDir="../images"
i | Note
Relative paths specified within the image upload acceptor script are
relative to the Web accessible location of the image upload acceptor
script.

2. EditLive! for XML's configuration file should now be edited to reflect the changes
made in the previous step. You will find these settings within the
<httpImageUpload> element. The URL setting should reflect the location of the
fileUpload.asp file on your Web server.

The following example reflects the setting of the href attribute of the
<httpImageUpload> element if the upload script could be found at the URL
http://www.yourserver.com/scripts/fileUpload.asp.
<editLive>
<mediaSettings>
<images>
<httpImageUpload
base= ...

href="http://www.yourserver.com/scripts/fileUpload.asp"

/>

130

Image Upload

</images>
</mediaSettings>

</editLive>

3. Finally the HTTP Image Upload base attribute should be changed to reflect the
location where images can be found on your Web server.
s Note
A
This location may not be the same value as that used within the upload

acceptor script, above. Rather, it will be the virtual directory alias used
by your Web server for the location listed in upload acceptor script.

This example follows from the code above. It uses an absolute URL as the value of
the base attribute. The value of the base attribute corresponds to the URL that
for the directory that images are uploaded to.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://www.yourserver.com/images/"
href="http://www.yourserver.com/scripts/fileUpload.asp"

/>

</images>
</mediaSettings>

</editLive>

See Also

« Using HTTP for Image Upload in Ephox EditLive! for XML

131

Image Upload

ASP.NET HTTP Image Upload Handler Script

Summary

ASP.NET allows for the easy creation of upload handler scripts. The following
ASP.NET page allows files to be uploaded. The fileupload.aspx page does not
process the upload, this task is performed by the fileupload.aspx.cs page.

Defining the location of the image upload handler script

The location of the image upload handler script must be defined within the XML
configuration file. This setting is configured via the href attribute of the
<httpImageUpload> element of the configuration file. To use this example script the
href attribute should point to the location of this script on the server.

Defining the location of the image upload directory

This example script uploads images to the directory specified by the imageDir
variable. In order for images to function correctly within EditLive! for XML the base
attribute of the <httpImageUpload> element must reflect the location of the directory
where images are to be stored on the Web server.

An example image upload handler script

Ephox has written a sample image upload handler script using Active Server Pages
and VBScript. This script can be found at
SDK;INSTALL\webfolder\uploadscripts\aspnet\fileUpload.aspxand
SDK;INSTALL\webfolder\uploadscripts\aspnet\fileUpload.aspx.csVduwe
SDK_INSTALL represents the location where the EditLive! for XML SDK is installed.

Example 10.3. Example ASP.NET Image Upload Script

ASP .NET allows for the easy creation of upload handler scripts. The following ASP
.NET page allows files to be uploaded. The fileupload.aspx page does not process
the upload, this task is performed by the fileupload.aspx.cs page. The code for the
fileupload.aspx page is as follows:

<%@ Page language="c#" Codebehind="fileupload.aspx.cs"
AutoEventWireup="false" Inherits="Ephox.FileUpload" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
<HEAD>
<title>fileupload</title>

N

-
w

Image Upload

<meta content="Microsoft Visual Studio 7.0" name="GENERATOR">
<meta content="C#" name="CODE LANGUAGE">
<meta content="JavaScript" name="vs defaultClientScript">
<meta content="http://schemas.microsoft.com/intellisense/ie5"
name="vs_ targetSchema">
</HEAD>
<body MS POSITIONING="GridLayout">
<form id="fileupload" method="post" runat="server">
</form>
</body>
</HTML>

The POST is then handled in the Page_ Load method of the fileupload.aspx.cs
page. This appears as follows:

private void Page Load(object sender, System.EventArgs e)

{

/*
* Set the "path" variable to the location where images are to be stored
o/

string path = "../images";

HttpFileCollection files;
files = Page.Request.Files;
for (int index=0; index < files.AllKeys.Length; index++)
{
HttpPostedFile postedFile = files[index];
string fileName = null;
int lastPos = postedFile.FileName.LastIndexOf ("\\");
fileName = postedFile.FileName.Substring(++lastPos);
//Check the file type through the extension
if (fileName.EndsWith ("jpg") || fileName.EndsWith ("jpeg") ||
fileName.EndsWith ("gif") || fileName.EndsWith ("png") ||
fileName.EndsWith ("tiff"))

postedFile.SaveAs (MapPath (path + "/" + fileName)) ;

Configuring EditLive! for XML to use the Image Upload Script

133

Image Upload

Below are the steps required to use the ASP.NET image upload handler from above
with EditLive! for XML in your own Web application.

For image upload, one line of code in the fileUpload.aspx.cs file must be
changed.

This line of code specifies the location where you wish image files to be uploaded
to. If the location of the upload acceptor script was
http://www.yourserver.com/scripts/fileUpload.aspx then setting the
path variable to . . /images would upload the images to a directory with the URL

http://www.yourserver.com/images/.

string path = "../images";

. Note

.y

Relative paths specified within the image upload acceptor script are
relative to the Web accessible location of the image upload acceptor
script.

EditLive! for XML's configuration file should now be edited to reflect the changes
made in the previous step. You will find these settings within the
<httpImageUpload> element. The URL setting should reflect the location of the
fileUpload.aspx file on your Web server.

The following example reflects the setting of the href attribute of the
<httpImageUpload> element if the upload script could be found at the URL

http://www.yourserver.com/scripts/fileUpload.aspx.

<editLive>

<mediaSettings>

<images>
<httpImageUpload
base= ...

href="http://www.yourserver.com/scripts/fileUpload.aspx"

/>

</images>

</mediaSettings>

</editLive>

134

Image Upload

3. Finally the HTTP Image Upload base attribute should be changed to reflect the
location where images can be found on your Web server.
. Note
)
This location may not be the same value as that used within the upload

acceptor script, above. Rather, it will be the virtual directory alias used
by your Web server for the location listed in upload acceptor script.

This example follows from the code above. It uses an absolute URL as the value of
the base attribute. The value of the base attribute corresponds to the URL that
for the directory that images are uploaded to.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://www.yourserver.com/images/"
href="http://www.yourserver.com/scripts/fileUpload.aspx"

/>

</images>
</mediaSettings>

</editLive>

See Also

« Using HTTP for Image Upload in Ephox EditLive! for XML

JSP HTTP Image Upload Handler Script

Summary

This article provides a sample script, written using a Java servlet, to upload images via
a HTTP POST. Instructions on how it can be tailored for use in Web applications are
also included.

Defining the location of the image upload handler script

135

Image Upload

The location of the image upload handler script must be defined within the XML
configuration file. This setting is configured via the href attribute of the
<httpImageUpload> element of the configuration file. To use this example script the
href attribute should point to the location of this script on the server.

Defining the location of the image upload directory

This example script uploads images to the directory specified by the TMAGEDIR
property within the IMAGEUPLOAD. properties file. In order for images to function
correctly within EditLive! for XML the base attribute of the <httpImageUpload>
element must reflect the location of the directory where images are uploaded to on the
Web server.

Setting Up the Sample JSP Image Upload Script

The JSP Image Upload Script provided with EditLive! for XML is dependant on the
Apache Commons FileUpload and Logging packages. These packages are provided
with the source for the JSP upload script in the
SDK_INSTALL\webfolder\uploadscripts\jsp\lib directory where spx INSTALL is
the directory where the EditLive! for XML SDK is installed. The source for the
example script can be found in the UploadScript.java file.

An implementation of the J2EE servlet API is also required to use the same upload
script. The servlet-api.jar file from the Apache Tomcat project has been included
in the SDK INSTALL\webfolder\uploadscripts\jsp\1lib directory where
SDK_INSTALL is the directory where the EditLive! for XML SDK is installed.

If this is not the case please change the example code according to the location where
this file can be found on your machine.

1. For image upload, the IMAGEDIR property in the IMAGEUPLOAD.properties file
must be changed to indicate the location to which images are to be uploaded.
Changing the IMAGEUPLOAD. properties does not require UploadScript.java
to be recompiled.

IMAGEDIR=C:\\webserver\\webapp\\images\\

2. Should you wish to alter the UploadScript.java file it must be recompiled for
the changes to take effect. Once you have completed your changes save the file.
The file must now be compiled into a .class file. To compile this file you will need
to run the Java compiler.

136

Image Upload

To run the Java compiler use the javac command from the command line. This
command takes the form of:

javac -classpath <files needed for compilation> <file for compilation> Files
that are needed for compilation should be listed with a semi-colon (;) separating
them. The compilation of the UploadTest . java file requires the Apache
Commons FileUpload library, as well as the servlet library (servlet.jar).

. Note

.
If there are spaces present in either the classpath or filename
arguments then these should be enclosed by quotation ("") marks as

shown below. For example, the following would be the command line
command which follows from the previous steps:

javac -classpath
".;C:\SDK_INSTALL\webfolder\uploadscripts\jsp\lib\commons-fileupload-1.0.Jjar;
C:\SDK_INSTALL\webfolder\uploadscripts\jsp\lib\servlet-api.jar;
C:\SDK_INSTALL\webfolder\uploadscripts\jsp\lib\commons-logging.jar"
"C:\SDK_INSTALL\webfolder\uploadscripts\jsp\UploadScript.java"

. Note

A

These locations will change dependant on your install of the EditLive!
for XML J2EE SDK and your Web server install. The location of the
servlet-api.Jjar file will depend on which Web server you are using.
The servlet-api.jar file may be replaced by an appropriate
equivalent for your Web server.

3. After this file has been correctly compiled (ie. the Java compiler has generated no
errors and the Uploadscript.class file has been generated) the
UploadScript.class file must be copied to the
EditLive! Java Install/WEB-INF/classes directory (where
EditLive Java Install represents the location that the EditLive! for XML SDK
install used by your Web server can be found). Following from the previous
examples the correct location for file would be:

C:\webserver\webapp\WEB-INF\classes\UploadScript.class

137

Image Upload

Installing the Upload Script on the Web Server

Once the UploadScript.class has been copied to the

EditLive! Java Install/WEB-INF/classes directory (where

EditLive Java Install represents the location that the EditLive! for XML SDK
install used by your Web server can be found) the web. xm1 file of the application must
include an appropriate servlet mapping. The following steps detail how to do this:

1. Declare the servlet alias for the Uploadscript class. The following XML declares
uploadScript servlet alias for the Uploadscript class. The <servlet-name>
element contains the servlet alias while the <servlet-class> tag contains the
name of the class (found within the weB-1NF/1ib directory of the Web
application) to be used for the servlet.

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">
<web-app>
<servlet>
<servlet-name>
uploadScript
</servlet-name>
<servlet-class>
UploadScript
</servlet-class>
</servlet>

2. Map a URL pattern to the servlet. The servlet will then be used to process HTTP
requests corresponding to the URL pattern. The context for the URL pattern is the
current Web application. Thus a mapping of /uploadscript within the
application edit1livejava would process all requests to the
http://webserver/editlivejava/uploadscript URL where webserver
represents the host server.

The following example maps the uploadscript servlet (as specified above) to the
/uploadscript URL pattern. The <servlet-name> element contains the servlet
alias name and the <ur1-pattern> contains the URL pattern to be used to map
to that servlet.

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">

<web-app>

138

Image Upload

<servlet>

</servlet>
<servlet-mapping>
<servlet-name>
uploadScript
</servlet-name>
<url-pattern>
/uploadscript
</url-pattern>
</servlet-mapping>

</webapp>

Configuring EditLive! for XML to Use the JSP Image Upload Script

Below are the steps required to use the JSP image upload handler with EditLive! for
XML in your own Web application.

1. EditLive! for XML's configuration file should now be edited to reflect the changes
made in the previous step. You will find these settings within the
<httpImageUpload> element. The URL setting should reflect the location of the
UploadScript.class file on your Web server.

The following example reflects the setting of the href attribute of the
<httpImageUpload> element if the upload script could be found at the URL
http://www.yourserver.com/webapp/uploadscript. See the previous section
for information on how to configure the URL mapping for the upload script.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base= ...
href="http://www.yourserver.com/webapp/uploadscript"

/>

</images>
</mediaSettings>

</editLive>

[ui
w
O

Image Upload

2. Finally the HTTP Image Upload base attribute should be changed to reflect the
location where images can be found on your Web server.

. Note

A

This location may not be the same value as that used within the upload
acceptor script, above. Rather, it will be the virtual directory alias used

by your Web server for the location listed in upload acceptor script.

This example follows from the code above. It uses an absolute URL as the value of
the base attribute. The value of the base attribute corresponds to the URL that
for the directory that images are uploaded to.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://www.yourserver.com/webapp/images/"
href="http://www.yourserver.com/webapp/uploadscript"

/>

</images>
</mediaSettings>

</editLive>

See Also

« Using HTTP for Image Upload in Ephox EditLive! for XML

140

Chapter 11. Using WebDAV with
EditLive! for XML

Using WebDAV with EditLive! for XML

Introduction

Ephox EditLive! for XML supports the WebDAYV protocol to enable directory browsing
when adding images or hyperlinks to a document. This provides the end users of
EditLive! for XML with an interface to easily browse directories on the server.
However, through the use of EditLive! for XML's XML configuration users can also be
restricted in their access so that only specific WebDAV repositories are available to
them.

This document provides information on how to use WebDAV with EditLive! for XML.
It assumes that you have a WebDAV enabled server and are able to configure your
server to allow WebDAV access to specific directories.

Using WebDAV with Images in EditLive! for XML

When using a WebDAV server with an instance of EditLive! for XML that has been
configured accordingly results in users being able to browse the relevant WebDAV
repository from within the Insert Image and Insert Hyperlink dialogs in EditLive!
for XML. In the case of the Insert Image dialog EditLive! for XML filters the
available files on the WebDAV repository according to their MIME type. This dialog
will only include files which have the image/jpeg, image/gif or image/png MIME

types.
Configuring EditLive! for XML for Use with WebDAV

EditLive! for XML can be easily configured for use with WebDAYV via the EditLive! for
XML configuration file. The configuration settings for the use of WebDAV with
EditLive! for XML can be found within the <webdav> element of the EditLive! for
XML configuration file. The <webdav> element contains a listing of WebDAV
repositories which have their details specified by the <repository> elements. For
more information on these elements please see the EditLive! for XML Configuration
Guide.

In order to use WebDAV with EditLive! for XML then the WebDAYV property or
attribute of your chosen EditLive! for XML API must be set to true. For more

141

Using WebDAV with EditLive! for XML

information on this property or attribute please consult your EditLive! for XML API.

Basic Configuration Example

The following provides a basic example of how to configure an instance of EditLive! for
XML for use with a WebDAV repository. It involves the minimum number of settings
to get WebDAV functioning correctly within EditLive! for XML. The server does not
implement password protection. For the purposes of this example the WebDAV server
which EditLive! for XML is being configured for use with has the following properties:

« The WebDAV repository has the URL
http://www.yourserver.com/UserFiles/WebDAV.

« The BASE for documents created with EditLive! for XML (i.e. the setting of the
BASE property of EditLive! for XML) is
http://www.yoursever.com/UserFiles/EditLiveFiles. This means that the
location of the WebDAYV repository relative to the EditLive! for XML document
baseis .. /webDAvV.

+ The repository should be listed to users as the Tmages repository.

The XML configuration for EditLive! for XML, in this case, would be:

<editLive>

<webdav>
<repository
name="Images"
baseDir="http://www.yourserver.com/UserFiles/WebDAV"
webDAVBaseURL=""../WebDAV"
/>

</webdav>

</editLive>

Setting a Default Browsing Directory

If, you want the end users of EditLive! for XML to view a directory other than the root
directory of the WebDAV repository by default then the defaultDir attribute of the
<repository> element should be used and assigned the relevant value. Users can still
move up the directory tree to the root directory if desired.

Continuing from the example above, if the

142

Using WebDAV with EditLive! for XML

http://www.yourserver.com/UserFiles/WebDAV directory had a subdirectory
images which you wished the users of EditLive! for XML to access by default then the
XML configuration for EditLive! for XML would be as follows:

<editLive>

<mediaSettings>
<images>
<webdav>
<repository
name="Images"
baseDir="http://www.yourserver.com/UserFiles/WebDAV"
webDAVBaseURL="". ./WebDAV"
defaultDir="images"
/>
</webdav>
</images>
</mediaSettings>

</editLive>

MIME Type Filtering with WebDAV

The browsing of a WebDAYV repository with EditLive! for XML can be restricted
according to the MIME of the files within the repository. As the WebDAV functionality
within EditLive! for XML is used with images then files with the following MIME types
will be displayed:

« image/jpeg

» image/png

« image/bmp

« image/gif

In order to activate MIME type filtering within EditLive! for XML the EditLive! for

XML configuration file must contain the relevant setting. Continuing from the
examples above the XML configuration for EditLive! for XML would be as follows:

<editLive>

<mediaSettings>
<images>

143

Using WebDAV with EditLive! for XML

<webdav>
<repository
name="Images"
baseDir="http://www.yourserver.com/UserFiles/WebDAV"
webDAVBaseURL=". ./WebDAV"
defaultDir="images"
useMimeType="true"
/>
</webdav>
</images>
</mediaSettings>

</editLive>

. Note
.y

The default setting for the useMimeType attribute is true.

Password Protected WebDAV Repositories

If your WebDAV repository implements basic authentication then you can configure
EditLive! for XML to use the correct username and password information. In order to
do this the <realm>element should be used and assigned the relevant values for the
realm, username and password for the WebDAYV repository concerned. If the
username and password specified are incorrect, EditLive! for XML will prompt the
user for a user for a username and password when the WebDAV server is accessed.

EditLive! for XML supports the following forms of authentication:

« Basic
« Digest
« NTLM

Continuing from the examples above the realm was www. yourserver.com (an NTLM
realm), and if the username was webdav and the corresponding password was
example then the XML configuration for EditLive! for XML would be as follows:

<editLive>

144

Using WebDAV with EditLive! for XML

<authentication>
<realm realm="www.yourserver.com" username="webdav" password="example" />
</authentication>

<mediaSettings>
<images>
<webdav>
<repository
name="Images"
baseDir="http://www.yourserver.com/UserFiles/WebDAV"
webDAVBaseURL=". ./WebDAV"
defaultDir="images"
useMimeType="true"
/>
</webdav>
</images>
</mediaSettings>

</editLive>

Summary

EditLive! for XML can easily be configured to work with WebDAYV repositories which
exist on your Web server. The configuration of EditLive! for XML for use with
WebDAYV affects end users when using the Insert Hyperlink and Insert Image
dialogs. In these dialogs the configuration of EditLive! for XML in this manner allows
the end users to browse the server for files to link to, in the case of the Insert
Hyperlink dialog, and, in the case of the Insert Image dialog, images which may be
inserted.

EditLive! for XML can be configured for use with WebDAYV through the <webdav>
and <repository> XML elements. EditLive! for XML can be configured, through the
<realm> XML element, to access WebDAYV servers which are password protected or
can be left to prompt users for a username and password.

See Also

« <webdav> element
+ <repository> element

o <realm> element

145

Using WebDAV with EditLive! for XML

« Enabling WebDAV on a Web Server

Enabling WebDAV on a Web Server

Introduction

WebDAV is a set of extensions to the HTTP protocol which allows for the collaborative
editing of files and management of files on remote Web servers. For more information
please refer to www.webdav.org [http://www.webdav.org].

This document provides information on how WebDAV can be enabled for use on a
selection of Web server and is intended as a basic guide only. If your Web server is not
listed within this documentation or you wish to obtain more information about your
Web server's WebDAV support please consult the documentation for your Web server.
If the steps outlined in this document are not correct for your Web server please
consult your Web server's documentation for information on its WebDAV support.

Microsoft IIS 5.0

Microsoft Internet Information Services (IIS) version 5.0 includes support for
WebDAV. IIS has WebDAV enabled on the server by default. To enable the WebDAV
functionality of IIS 5.0 for a specific directory the relevant directory must be available
through your Web server and it must also have directory browsing turned on.

A folder may be shared on a Web server by editing its properties. The relevant
properties appear on the Web Sharing tab.

In the example below a folder has been shared on an IIS Web server using the Web
alias of example.

146

http://www.webdav.org

Using WebDAV with EditLive! for XML

Program Files Properties 2 x|

General ‘web Sharng |Sharing| Securityl
@ Internet Infarmation Services

" Do not ghare thiz folder
—{+ Share thiz folder

Aliazes
example Add..
Edit Froperties:..
Hemoyve
] I Cancel Apmly

Figure 1. Folder Properties - Web Sharing

The example below demonstrates the enabling of WebDAYV for the folder with the alias
of example.

147

Using WebDAV with EditLive! for XML

Editalias]

Drirectary; L:MWProgram Files\Ephox Editbive tor Javahlls SDE el

Bliaz: example

—Aocess permizsions
v Read [Script source access
[wiite v Directory browsing

—Application permizsions
" More
% Scripts

" Execute [includes scripts)

ok, I Cancel

Figure 2. Editing Web Sharing Properties

The configuration of WebDAV for a directory on IIS is achieved through the Web
server permission settings.

Apache Tomcat

Apache Tomcat includes WebDAV functionality in versions 4.0 and above. The default
install of Apache Tomcat includes an example WebDAV application in the

TOMCAT HOME/webapps/webdav directory where TomMcaT HOME is the install directory
of Apache Tomcat.

The WebDAYV application packaged with Apache Tomcat is configured to provide
read-only access. To configure this example to allow for write access uncomment the
following lines in the TOMCAT HOME/webapps/webdav/WEB INF/web.xml file:

Ll ==

<init-param>
<param-name>readonly</param-name>
<param-value>false</param-value>

148

Using WebDAV with EditLive! for XML

</init-param>
-—>

For more information on configuring Apache Tomcat please consult the Apache
Tomcat documentation.

Apache Web Server

A third party Apache module called mod_ dav is available to enable DAV
functionality with an Apache Web server. The distribution for this module can be
found at www.webdav.org/mod_dav/ [http://www.webdav.org/mod_dav/]. For
information on how to install the mod_dav module please see its install page
[http://www.webdav.org/mod_dav/install.html].

To turn WebDAYV functionality on for a directory once you have installed the mod_dav
module, simply place the following code within the relevant <pirectory> or
<Location> directive in your Apache configuration file (httpd.conf):

DAV On

Once WebDAYV is enabled for a <Directory> then all its subdirectories will also have
WebDAYV enabled. When enabling WebDAYV for a <Location> WebDAV will be
enabled for that portion of the URL namespace.

For more information on Apache Web Server WebDAYV configuration see
www.webdav.org/mod_dav/install.html#apache
[http://www.webdav.org/mod_dav/install.html#apache].

Summary

A number of Web servers support the WebDAYV extensions to the HTTP protocol. The
processes outlined in this document should give a basic overview of how to enable the
WebDAV functionality of Microsoft IIS 5.0, Apache Tomcat versions 4.0 and above
and Apache Web Server with the mod_ dav module. For more specific and detailed
information on how to enable WebDAYV on one of these Web servers please consult the
documentation for the relevant Web server. If your Web server is not listed in this
document please examine your Web server's documentation for information on
whether it supports the WebDAV HTTP extensions and how to activate this
functionality if it does.

149

http://www.webdav.org/mod_dav/
http://www.webdav.org/mod_dav/install.html
http://www.webdav.org/mod_dav/install.html#apache

Using WebDAV with EditLive! for XML

EditLive! for XML provides a standard WebDAV client interface and can be used with
Web servers which support the WebDAV HTTP extensions.

See Also

« Using WebDAYV with EditLive! for XML
« www.webdav.org [http://www.webdav.org]
« www.webdav.org/mod_dav/ [http://www.webdav.org/mod_dav/]

« www.webdav.org/mod_dav/install.html
[http://www.webdav.org/mod_dav/install.html#apache]

150

http://www.webdav.org
http://www.webdav.org/mod_dav/
http://www.webdav.org/mod_dav/install.html#apache

Chapter 12. Internationalization
Support

Using Different Dictionaries with Ephox EditLive! for XML

Introduction

Ephox EditLive! for XML can be configured to use different spell checkers so that it
can be used in different countries and regions. The specification of the spell checker to
use with EditLive! for XML is performed via the EditLive! for XML configuration file.

Users can also add words to the local dictionary. These customizations to the EditLive!
for XML dictionary are particular to a single client as the customizations are preserved
on the client. To customize the dictionary on the server please refer to the article on
Creating Custom Dictionaries for EditLive! for XML.

Setting the Spell Checker for EditLive! for XML

The spell checkers for EditLive! for XML for different languages are each packaged as
separate files. In order to configure EditLive! for XML to use a spell checker the
program must be informed of the location of the relevant spell checking package, this
occurs via the EditLive! for XML configuration. The <spellCheck> element of the
EditLive! for XML configuration provides EditLive! for XML with the location of the
spell checker package which it is to use. The location is specified as a URL which can
be either relative or absolute.

Dictionaries for the EditLive! for XML spell checker can be found in the
webfolder/redistributables/editlivexml/dictionaries folder of your
EditLive! for XML install. In order to use these dictionaries with EditLive! for XML
the <spellCheck>element of the EditLive! for XML configuration should be modified
to reflect the location of the dictionary to be used.

» Note
A
The file name of the . jar file for the spell checker dictionary for use with
EditLive! for XML must use all lower case letters.

Adding Words to the Local Dictionary

Users can also add words to the dictionary which are then stored locally on the client.

151

Internationalization Support

Any words added to the local dictionary by users will persist on the client even when
the dictionary is updated on the server. Words are added to the local dictionary when a
user clicks the Add word option on the spell checker.

Example

The following example demonstrates how to configure EditLive! for XML to use the
United States English spell checking package as its spell checker. In this example the
relevant package can be found via the URL
redistributables/editlivexml/dictionaries/en us 3 0.3jar. This exampleisa
partial EditLive! for XML configuration document.

<editLive>
<spellCheck Jjar="redistributables/editlivexml/dictionaries/en us 3 0.jar" />

</editLive>

Available Spell Checkers

en_us_3_o0.jar English (US)

en_br_3_o.jar English (UK)

pb_3_o.jar Brazilian Portuguese

da_3_o.jar Danish

du_3_ojar Dutch

fi_3_o.jar Finnish

fr_3_o.jar French - European and Canadian

ge_3_o.jar German

it_3_o.jar Italian

no_3_o.jar Norwegian

po_3_o.jar Portuguese (Iberian)

Sp_3_o0.jar Spanish - European, Mexican and South American

152

Internationalization Support

SW_3_o0.jar Swedish

Summary

The spell checker for EditLive! for XML can be configured according to the language
which you wish to use with EditLive! for XML. Each spell checker for EditLive! for
XML is provided as an individual package separate from the EditLive! for XML applet
package. In order to specify the spell checker to be used with EditLive! for XML the
XML configuration for the relevant instance of EditLive! for XML must include a URL
indicating the spell checking package in the <spellCheck>element.

See Also

» <spellCheck> XML element

« Creating Custom Dictionaries for EditLive! for XML

Using Different Character Sets with EditLive! for XML

Introduction

Ephox EditLive! for XML supports multiple character sets which allow it to be used in
an international environment. The character set used by EditLive! for XML is defined
within the XML document loaded into EditLive! for XML. If no character encoding is
specified then EditLive! for XML will default to using UTF-8 encoding. The UTF-8
character set supports international character sets.

Supported Character Sets

EditLive! for XML supports the display and usage of the following character sets:

ASCII American Standard Code for Information Interchange
CP1252 Windows Latin-1

UTF8 Eight-bit Unicode Transformation Format

UTF-16 Sixteen-bit Unicode Transformation Format

ISO2022CN Sixteen-bit Unicode Transformation Format

153

Internationalization Support

ISO2022JP JIS X 0201, 0208 in ISO 2022 form, Japanese
ISO2022KR ISO 2022 KR, Korean

ISO8859_1 ISO 8859-1, Latin alphabet No. 1
ISO8859_2 ISO 8859-2, Latin alphabet No. 2
ISO8859_3 ISO 8859-3, Latin alphabet No. 3
ISO8859_4 ISO 8859-4, Latin alphabet No. 4
ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet
ISO8859_6 ISO 8859-6, Latin/Arabic alphabet
ISO8859_7 ISO 8859-7, Latin/Greek alphabet
ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet
ISO8859_9 ISO 8859-9, Latin alphabet No. 5
ISO8859_13 ISO 8859-13, Latin alphabet No. 7
ISO8859_15 ISO 8859-15, Latin alphabet No. 9
SJIS Shift-JIS, Japanese

Bigs Chinese Bigs.

Setting the Character Set via the Document

The character set to be used within EditLive! for XML can be specified in the
document to be loaded into EditLive! for XML. To set the character set in this way the
XML declaration at the start of the document must specify the character set of the
document to be loaded into EditLive! for XML. This is done by specifying a value for
the encoding attribute. If no character set is specified then EditLive! for XML will
use UTF-8 by default.

Example 12.1. Setting the Character Set to ASCII via the XML Declaration

<?xml version="1.0" encoding="ASCII"?>

154

Internationalization Support

Summary

The character set for use with an instance of EditLive! for XML can be specified within
the document loaded into EditLive! for XML. This declaration must be made inside
the XML declaration at the beginning of the file using the encoding attribute. If no
character set is specified then EditLive! for XML will use UTF-8 by default.

155

Chapter 13. Ephox CSS Extensions
for Custom Tags

This chapter provides information on the Ephox cascading style sheet (CSS)
extensions which may be used with the custom tag support of EditLive! for XML.
Through the use of these Ephox CSS extensions developers can affect the way that
custom tags are rendered in EditLive! for XML. The Ephox CSS extensions can be
implemented in either an external style sheet or an embedded style sheet.

For more information on how to use Ephox CSS extensions with custom tags see the
section titled Using Ephox CSS Extensions with Custom Tags.

display Attribute

Description

The display attribute specifies what type of rendering area should be allocated to the
relevant tag. It also affects the way in which EditLive! for XML interprets the tag when
parsing the content.

Permitted Values

block The tag and content are displayed. The tag must contain content, if the tag
does not contain content then it is removed. Custom block tags will not be
automatically wrapped within other tags.

inline The tag and content, if present, are displayed. The tag may or may not
contain content. If the tag does not contain any content on the tag will be
rendered. Custom inline tags will be automatically wrapped within a block
tag (i.e. <p>) .

empty Only the tag is displayed. This display type should only be used with custom
tags that do not contain content.

Example

The following example specifies that the custom tag <MyTag> is to be rendered and
interpreted as an inline tag and will be rendered with the label custom Tag.

MyTag{

(@)

(.
Q1

Ephox CSS Extensions for Custom Tags

display: inline;
ephox-label: Custom Tag
}

ephox-end-icon Attribute

Description

This CSS attribute can be used to specify the icon used for a closing custom tag (e.g.
</CustomTag>). This attribute should not be used with an empty tag. The icon for
empty tags can be specified through the ephox-icon attribute.

Permitted Values

[url] A URL which maps to an image which is to be used as the icon for this
custom tag. This URL can be either relative or absolute. If relative URLSs are
specified they are resolved in relation to either the BaseURL (if specified) or
the page in which EditLive! for XML is embedded (if the BaseURL is not
specified).

Example

The following example specifies the image icons/starticon.gif for the start tag
icon and icons/endicon.gif for the end tag icon of the custom tag MyTag.

MyTag {
display: block;
ephox-start-icon: url (icons/starticon.gif);
ephox-end-icon: url (icons/endicon.gif)

}

ephox-end-label Attribute

Description

This CSS attribute can be used to specify the label used for a closing custom tag (e.g.
</CustomTag>). This attribute should not be used with an empty tag. The label for
empty tags can be specified through the ephox-label attribute.

157

Ephox CSS Extensions for Custom Tags

Permitted Values

[label] A label to be used with the end tag of a custom tag.

Example

The following example specifies the label custom Tag for the start tag label and
/Custom Tag for the end tag label of the custom tag mMyTag.

MyTag {
display: block;
ephox-start-label: Custom Tag;
ephox-end-label: /Custom Tag;
}

ephox-icon Attribute

Description

This CSS attribute can be used to specify the icon used for a custom tag. If using this
attribute with either block or inline tags then it should be used instead of the
ephox-start-icon and ephox-end-icon attributes. When specifying an icon to represent
an empty tag this attribute must be used.

Permitted Values

[url] A URL which maps to an image which is to be used as the icon for this
custom tag. This URL can be either relative or absolute. If relative URLSs are
specified they are resolved in relation to either the BaseURL (if specified) or
the page in which EditLive! for XML is embedded (if the BaseURL is not
specified).

Example

The following example specifies the image icons/icon.gif for the start and end tag
icons of the custom tag mMyTag.

MyTag {
display: block;

158

Ephox CSS Extensions for Custom Tags

ephox-icon: url (icons/icon.gif)

}

ephox-label Attribute

Description
This CSS attribute can be used to specify the label used for a custom tag. If using this
attribute with either block or inline tags then it should be used instead of the

ephox-start-label and ephox-end-label attributes. When specifying an label to
represent an empty tag this attribute must be used.

Permitted Values

[label] A label to be used with the start and end tags of a custom tag.

Example

The following example specifies the label custom Tag for the start and end tag labels
of the custom tag MyTag.

MyTag {
display: block;
ephox-label: Custom Tag
}

ephox-start-icon Attribute

Description
This CSS attribute can be used to specify the icon used for an opening custom tag (e.g.
<CustomTag>). This attribute should not be used with an empty tag. The icon for

empty tags can be specified through the ephox-icon attribute.

Permitted Values

[url] A URL which maps to an image which is to be used as the icon for this

159

Ephox CSS Extensions for Custom Tags

custom tag. This URL can be either relative or absolute. If relative URLSs are
specified they are resolved in relation to either the BaseURL (if specified) or
the page in which EditLive! for XML is embedded (if the BaseURL is not
specified).

Example

The following example specifies the image icons/starticon.gif for the start tag
icon and icons/endicon.qgif for the end tag icon of the custom tag mMyTag.

MyTag {
display: block;
ephox-start-icon: url (icons/starticon.gif);
ephox-end-icon: url (icons/endicon.gif)

}

ephox-start-label Attribute

Description

This CSS attribute can be used to specify the label used for an opening custom tag (e.g.
<CustomTag>). This attribute should not be used with an empty tag. The label for
empty tags can be specified through the ephox-label attribute.

Permitted Values

[label] A label to be used with the opening tag of a custom tag.

Example

The following example specifies the label custom Tag for the start tag label and
/Custom Tag for the end tag label of the custom tag MyTag.

MyTag {
display: block;
ephox-start-label: Custom Tag;
ephox-end-label: /Custom Tag;
}

160

Chapter 14. Using EditLive! for XML
Without The Visual Designer

Creating XSLTs Without The Visual Designer

Introduction

While the Visual Designer offers a simple way for non-technical users to create forms
for use within EditLive! for XML, however, developers who are familiar with XSLT
may also create forms by hand to take advantage of the full power and flexibility of
XSLT. EditLive! for XML has been designed with this in mind and supports most
XSLTs without change. However, to take full advantage of EditLive! for XML there are
some simple things to keep in mind and a number of Ephox extensions to XSLT which
provide control over the additional features provided by EditLive! for XML. All the
Ephox extensions to XSLT are in a separate namespace and will be ignored by
standard XSLT processors. It is therefore possible to take full advantage of the
features of EditLive! for XML and still use the same XSLT outside of EditLive! for
XML.

Design Considerations

Context Node

The context node is a key concept in writing XSLTs and this is particularly true with
EditLive! for XML. Nearly all of the EditLive! for XML's features utilize the context
node in some way. When developing an XSLT for use with EditLive! for XML the
XSLT should be structured so that the context node is relevant for each part of the
XSLT. For instance, when creating the output for an optional element it is better to
use:

<?xml version="1.0"7?>

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled">

<xs:template match="/">

<html>
<head />
<body>
<!-- The context node is now / —-->
<p>

161

Using EditLive! for XML Without The
Visual Designer

<xs:apply-templates select="/my:Untitled/my:optionalElement" />
</p>
</body>
</html>
</xs:template>

<xs:template match="my:optionalElement">
<!-- The context node is now my:optionalElement -->
<xs:value-of select="." />
</xs:template>
</xs:stylesheet>

as opposed to:

<?xml version="1.0"7?>

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled">

<xs:template match="/">
<html>
<head />
<body>
<!-- The context node is now / -->
<p>
<xs:value-of select="/my:Untitled/my:optionalElement" />
</p>
</body>
</html>
</xs:template>
</xs:stylesheet>

In a standard XSLT processor both examples produce the same output, but in
EditLive! for XML the first example will automatically provide a button that allows the
user to insert the optional element whereas the second example assumes the element
always exists and provides a text field. For more information on how buttons are
added to the EditLive! for XML interface please see the section on Automatically
Added Buttons.

Imports and Includes

When including data from files other than the XML document being edited, it is
important to mark the data as read only as any changes made by the user will be lost.

162

Using EditLive! for XML Without The
Visual Designer

This occurs because only the XML document loaded into the editor is returned and
thus changes to other files will be lost. The ephox: readonly attribute can be used to
indicate that data is read only.

When specifying relative URLSs for imports and includes, be aware that the XSLT or
XSD must have been loaded from an URL rather than being passed into EditLive! for
XML as a string so that there is a base URL to resolve it against. It is recommended
that absolute URLSs be used whenever possible to avoid confusion.

XPath Expressions

EditLive! for XML includes the ability to dynamically re-evaluate XPath expressions as
the user makes changes to the XML document. While standard XPath expressions will
work as expected in most cases there are some important considerations users of
XPath should keep in mind. The dynamic XPath engine in EditLive! for XML cannot
evaluate XSLT variables, therefore any XPath expressions that reference XSLT
variables will be statically displayed instead of dynamically updating. XSLT designers
can provide an ephox:button with an action of updateview to allow the user to
re-evaluate the expression.

Using Ephox XSLT Extensions

Introduction

Ephox EditLive! for XML provides a number of extensions to XSLT to provide extra
functionality and control of EditLive! for XML. These extensions are provided in a
separate namespace so that they are ignored by standard XSLT processors. This
means that an XSLT can be used outside of EditLive! for XML even if it contains
Ephox extensions and the extensions will simply be ignored.

Declaring The Namespace

All Ephox extensions use the
http://www.ephox.com/product/editliveforxml/1.0/ namespace. Before you
can use the extensions you must first declare this namespace in your XSLT. For
example, to bind the Ephox extension namespace to the ephox prefix use the
declaration below:

xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"

The normal namespace inheritance rules for XML apply. It is generally easiest to add
this attribute to the stylesheet element of the XSLT so it is available everywhere in

163

Using EditLive! for XML Without The
Visual Designer

the document. A typical stylesheet element might look like:

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" xmlns="http://wyw.w3.org/1l

Supported Extensions

The extensions supported by EditLive! for XML are:

ephox:button A button inside the document layout that allows the user
to initiate actions like a toolbar button.

ephox:autoaddbuttons Controls whether or not insert and remove buttons are
automatically added to the document for repeating and
optional elements.

ephox:displayas Specifies the type of control to use for editable values.

ephox:displayitems Specifies a more user friendly set of items to display to
the user in combo boxes and lists. The actual values
inserted into the XML are still what is specified in the
schema or in ephox: items but the user sees these

values.
ephox:items Specifies the items to provide in combo boxes and lists.
ephox:readonly Specifies that a value should not be editable by the user.

Automatically Added Buttons

EditLive! for XML will automatically insert action buttons for some elements from
XML. Whether action buttons are inserted for a particular element or not is dependant
on both the XSD and the XSLT for the XML file being edited in EditLive! for XML. The
XSD specifies whether a particular element or attribute is optional or if an element can
be repeated. Action buttons will only be automatically added for optional elements or
attributes or repeating elements. The insertion of action buttons is also dependant on
the structure of the XSLT in use. Action buttons will only ever be inserted when the
apply-templates, template, Or for-each XSL element is used within the XSLT. The
following list describes the situations in which action buttons will automatically be
inserted within EditLive! for XML.

164

Using EditLive! for XML Without The
Visual Designer

EditLive! for XML will automatically insert action buttons for the following XSL
elements in the following situations:

apply—templatesfbran
optional element or repeating
element

template for a repeating
element

template for an optional
element or attribute

for-each for repeating elements

EditLive! for XML will automatically insert an
action button to insert the element if it doesn't
already exist.

EditLive! for XML will automatically insert an
action button to remove the element and an action
button to insert another element.

EditLive! for XML will automatically insert a
remove action button for the element or attribute.

EditLive! for XML will automatically insert an
action button to insert new elements and remove
existing elements. If no elements are present an
action button will be added to allow the user to add
one. This is a combination of the two behaviours
above.

Understanding the Current Element or Context Node

The current element for Ephox buttons is always the context node from where it
appeared in the XSLT. Most operations will apply on this element so it is important to
be aware of the context element, especially when using Ephox buttons (see the
ephox:button element). In most cases, the most intuitive place to put the
ephox:button in the XSLT is correct, however there are times when this may not be
the case. As an example, to provide an action button that removes an optional element
when it is present the XSLT should look like:

<?xml version="1.0" encoding="US-ASCII"?>

<xs:stylesheet version="1.0"

xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled"

xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"
xmlns="http://www.w3.0rg/1999/xhtml">

<xs:template match="/">
<html>
<head></head>
<body>

<xs:apply-templates select="my:document/my:optionalElement" />

</body>

165

Using EditLive! for XML Without The
Visual Designer

</html>
</xs:template>

<!--The context node for this template is "my:optionalElement"-->
<xs:template match="my:optionalElement" ephox:autoaddbuttons="false">

<p>Optional value: <xs:value-of select="." />
<ephox:button action="xmlRemove" text="Remove Optional Element" />
</p>

</xs:template>
</xs:stylesheet>

Note that a separate template is used for the my: optionalElement so that the context
node changes to the my: optionalElement instead of /. Also note the use of
ephox:autoaddbuttons to disable the automatically inserted remove button. The
XSLT below would be incorrect and not work as intended:

<?xml version="1.0" encoding="US-ASCII"?>

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"
xmlns="http://www.w3.0rg/1999/xhtml">

<xs:template match="/">
<html>
<head></head>
<body>
<p>Optional value:
<!--The context node here is still "/" -->
<xs:value-of select="my:document/my:optionalElement" />
<ephox:button action="xmlRemove" text="Remove Optional Element" />
</p>
</body>
</html>
</xs:template>
</xs:stylesheet>

In the second example, the context node is not changed and so the remove action
button will attempt to remove the root node, resulting in an error. This XSLT will also
incorrectly show the Optional value: label and a text box for the value of
my:optionalElement even when it doesn't exist in the XML document. See Manually
Creating XSLTs For EditLive! for XML for more information on managing the context
node.

166

Using EditLive! for XML Without The
Visual Designer

ephox:button Element

The ephox:button element embeds an action button in the document that, when
clicked, activates a function of the editor. Typically, action buttons are used to insert,
remove or move XML element in the document, however they can also be used to raise
events that activate custom functionality or to re-evaluate the XSLT.

[:.

Important

Maintaining an awareness of the context node is very important when
using the ephox:button element. For more information on how the
context node is used when implementing Ephox action buttons please see
the section on Understanding the Current Element or Context Node.

Note

Action buttons do not enable and disable based on XSD values, they will
always perform their specified function. For example, an ephox:button
element with the action of xm1Remove will always remove the relevant
element when clicked. It will not disable, even when the minimum
occurrences, as specified in the XSD, is reached.

Required Attributes

action

Specifies the action to perform when the button is clicked. The value must
be one of the following;:

» getCurrentNodeValue - Get the value of the current node and supply
the value, along with an 1D for the element to the callback function. The
SetXMLNodeValue function can then be used to set a new value for the
current node.

e xmlInsertAtCurrent - Insert an element as a child of the current
element.

e xmlInsertAfter - Insert an element after the current element.
e xmlInsertBefore - Insert an element before the current element.
« xmlRemove - Remove the current element.

« xmlMoveUp - Moves the current element before it's previous sibling.

167

Using EditLive! for XML Without The
Visual Designer

» xmlMoveDown - Moves the current element after it's next sibling.

* raiseEvent - Raise an event back to the browser or to the embedding
application.

+ updateview - Re-evaluate the XSLT to update the view. This is useful
when the output of the XSLT changes depending on the values of
specific elements.

Optional Attributes

value The value associated with the action. For actions that insert an XML
element, the value should be the namespace and local name of the
element to insert, separated by a colon. For example to insert a new
optionalElement in the
http://www.ephox.com/product/editliveforxml/document/Untitled
namespace, the value would be:

http://www.ephox.com/product/editliveforxml/document/Untitled:optionalElement

When running as an applet, the raiseEvent and getCurrentNodevalue
actions use the value as the name of the JavaScript function to call,
otherwise the value is provided by the getExtraString () method of the
TextEvent that is raised.

.y

Note

ThexmlRemove,xmlMoveUp,xmlMoveDownandupdateView
actions ignore the value attribute.

text The text to display on the button.

imageURL The URL to the image to use for the button. The default images used are
16 pixels by 16 pixels however the image can be any size.

ephox:autoaddbuttons Attribute

The ephox:autoaddbuttons attribute allows the automatically generated action

168

Using EditLive! for XML Without The
Visual Designer

buttons to be suppressed. By default, EditLive! for XML automatically detects optional
and repeating elements and optional attributes then automatically inserts action
buttons to allow the user to add and remove them. In some situations, the designer of
the XSLT may wish to manually position these buttons or to not provide them at all
and the ephox:autoaddbuttons attribute enables developers to prevent EditLive! for
XML automatically adding action buttons.

ephox:autoaddbuttons attribute can be used within three XSL elements:

e template elements
e apply-templates elements

e for-each elements

i | Note

The ephox:autoaddbuttons attribute is only of use in XSL elements when
they cause action buttons to be inserted. For more information on when
EditLive! for XML will automatically add action buttons when processing
XSL elements please see the section on Automatically Added Buttons.

Possible Values

The ephox:autoaddbuttons attribute requires a boolean value of either true or false.

When set to t rue EditLive! for XML will automatically provide action buttons when
processing the element containing the ephox:autoaddbuttons attribute.

When set to false EditLive! for XML will not provide action buttons for the element
containing the ephox:autoaddbuttons attribute.

Example

The example below uses the ephox:autoaddbuttons attribute to prevent any action
buttons from being inserted for the specified element.

<?xml version="1.0" encoding="US-ASCII"?>

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"
xmlns="http://www.w3.0rg/1999/xhtml">

169

Using EditLive! for XML Without The

Visual Designer
<xs:template match="/">
<html>
<head/>
<body>
<!-- The ephox:autoaddbuttons="false" attribute prevents an insert

button from automatically being generated if the element
doesn't exist in the document. -->
<xs:apply-templates select="my:document/my:repeatingElement"
ephox:autoaddbuttons="false"/>
</body>
</html>
</xs:template>

<!-- The ephox:autoaddbuttons="false" attribute prevents EditLive! for XML
from automatically inserting a remove and insert after button for each
element in the document. -->

<xs:template match="my:repeatingElement" ephox:autoaddbuttons="false">

<p>Value: <xs:value-of select="." /></p>

</xs:template>

</xs:stylesheet>

When using for-each elements, the example would look like:

<?xml version="1.0" encoding="US-ASCII"?>

<xs:stylesheet version="1.0"
xmlns:xs="http://www.w3.0rg/1999/XSL/Transform"
xmlns:my="http://www.ephox.com/product/editliveforxml/document/Untitled"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"
xmlns="http://www.w3.0rg/1999/xhtml">

<xs:template match="/">
<html>
<head></head>
<body>
<!-- The ephox:autoaddbuttons="false" attribute prevents any action
buttons from being automatically inserted. -->
<xs:for-each select="my:document/my:repeatingElement"
ephox:autoaddbuttons="false">

<p>Value: <xs:value-of select="." /></p>
</xs:for-each>
</body>
</html>

</xs:template>
</xs:stylesheet>

170

Using EditLive! for XML Without The
Visual Designer

ephox:displayas Attribute

The ephox:displayas attribute allows the designer of the XSLT to specify an
alternate control type when displaying values from the XML document. By default,
EditLive! for XML automatically selects the type of control to use based on the type
specified in the schema. However, in some circumstances it is useful to override the
default choice and ephox:displayas provides a way to do so. It can only be used
within value-of XSL elements.

Possible Values

The ephox:displayas attribute can only be used within value-of XSL elements and
its value must be one of the following:

field

password

checkbox

combo

editableCombo

list

Use a standard text box. The user may enter any value without
restriction.

A password text box is used. The user may enter any value without
restriction, however the current value is shown only as bullets
rather than showing the actual characters. This is suitable for
allowing the user to enter a password while preventing
by-standers from seeing the password. Note that the actual value
is inserted into the XML document without any encryption and
will be visible when submitted or if the user switches to code view.
When security is a concern, HTTPS should be used to submit the
document.

A checkbox is used to allow the user to specify either true or
false. If the checkbox is checked, t rue will be inserted into the
XML file, otherwise fa1se will be inserted. It is not currently
possible to specify different values to insert - in these cases a
combo box or list should be used instead.

A combo box is used and the user must select one of the options
from the combo box. The items in the combo box are specified
with the ephox:items attribute and the ephox:displayitems
attribute.

Uses a combo box that will allow the user to select an item from a
drop down or type in their own value. The items in the drop down
are specified with the ephox: items attribute and the
ephox:displayitems attribute.

A list is used and the user must select one of the values in the list.

171

Using EditLive! for XML Without The
Visual Designer

A scroll bar is provided if the number of list items exceeds the
available space. The items in the list are specifed with the
ephox:items attribute and the ephox:displayitems attribute.

date A date picker is provided for the user to select from. The value
inserted into the XML is compatible with the W3C schema date
type.

time A time picker is used.

dateTime A combination control that allows the user to specify and date and

time value is provided.

Examples

Using a Standard Field

<xs:value-of select="." ephox:displayas="field"

xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"/>

Entered YValue

Using a Password Field

<xs:value-of select="." ephox:displayas="password"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />
s o ok ok R kK Rk
Using a Check Box
<xs:value-of select="." ephox:displayas="checkbox"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

Using a Combo Box

<xs:value-of select="." ephox:displayas="combo"

ephox:items="iteml, item2, item3" ephox:displayitems="Item 1,Item 2,Item 3"

179

1/

Using EditLive! for XML Without The
Visual Designer

xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

|ItE:m 2w

[tern 1

[tetn 3

Using an Editable Combo Box

<xs:value-of select="." ephox:displayas="editableCombo"
ephox:items="iteml, item2, item3" ephox:displayitems="Item 1,Item 2,Item 3"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"™ />

Uzer Entry w

[tetn 1

[tetn 3

Using a Date Picker

<xs:value-of select="." ephox:displayas="date"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"™ />

71404 |

] Juby 2004 e
Sun Mon Tue Wed Thu Fri Sat
EN EH ER

L4 s |[s]7|s]s]0]
(11 |[12][13 |[14 |[15 |[16 |[17 |
18 |[19 [[20 || 21 |[22 |[23 || 24 |
25 |[26 [[27 |l28 |[20 |[20 || 31 |

173

Using EditLive! for XML Without The
Visual Designer

Using a Time Picker

<xs:value-of select="." ephox:displayas="time"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

12:00:00 =

Using a Date and Time Picker

<xs:value-of select="." ephox:displayas="dateTime"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

F’.-’EQIDAI 1:50:45 PM

£ Date and Time
: July 2004 =
Sun Mon Tue Wed Thu Fri Sat
L1][2 3]
4 |5 (sl 7|88]0]
11 |[12 ||13 || 14 |15 || 18 || 17 |
18 ||19 |20 || 21 || 22 || 23 || 24 |
25 || 25 ||27 || 28 || 29 || 30 || 31 |

| 8] | | Cancel |

ephox:items and ephox:displayitems Attributes

Introduction

The ephox:items and ephox:displayitems attributes are used together to specify
the items to display in combo boxes, editable combo boxes and lists.
ephox:displayitems is used to specify the items to display to the user and
ephox:items is used to specify the corresponding values to insert into the XML. The

174

Using EditLive! for XML Without The
Visual Designer

ephox:items and ephox:displayitems attributes should only be used within XSL
value-of elements.

ephox:items Attribute

The ephox: items attribute is used to specify a list of values for combo boxes, editable
combo boxes and lists. The value is a comma separated list of items. When
ephox:items is used without ephox:displayitems each item is displayed to the user,
and when selected inserted into the XML. However when ephox:displayitems is
used, the items in ephox:displayitems are displayed to the user and when selected,
the corresponding item in ephox: items is inserted into the XML. The ephox:items
attribute should only be used within XSL value-of elements.

When ephox: items is not specified, the values for combo boxes, editable combo boxes
and lists are taken from the schema for the document.

Possible Values

The value of the ephox: items attribute must be a comma separated list of items. This
list represents the list of values which may be inserted into the XML document for the
relevant element or attribute. When using the ephox: i tems attribute in tandem with

the ephox:displayitems attribute the number of items in the comma separated lists
for each attribute must match.

ephox:displayitems Attribute

The ephox:displayitems attribute is used to specify a list of items to display in
combo boxes, editable combo boxes and lists. The value is a comma separated list of
items to display. ephox:displayitems must be used with either ephox:items ora
schema type that has enumeration facets specifying allowed values. Each item in
ephox:displayitems corresponds in order to an item in ephox: i tems or the schema
enumerations and is used as a user friendly version of the value. There must be exactly
the same number of items in ephox:displayitems as there are specified values. The
ephox:displayitems attribute should only be used within XSL value-of elements.

Possible Values

The value of the ephox:displayitems attribute must be a comma separated list of
items. This list represents the list of values which are displayed for the relevant
element or attribute in the XML document. When using the ephox:displayitems
attribute in tandem with the ephox: i tems attribute the number of items in the
comma separated lists for each attribute must match.

Examples

175

Using EditLive! for XML Without The
Visual Designer

USing ephox:items And ephox:displayitems Together

The example below will display as a combo box with the items:

e Ttem 1
e Ttem 2
e Ttem 3

When the user selects an item, the value from ephox: i tems will be inserted. For
example if Ttem 1 is selected by the user item1 will be inserted into the XML.
Similarly if the user selects 1tem 3, item3 will be inserted into the XML.

<xs:value-of select="." ephox:displayas="combo"
ephox:items="iteml, item2, item3" ephox:displayitems="Item 1,Item 2,Item 3"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

Using ephox:items AlOne

The example below will display as a list with the items:

e iteml
e item2
e item3

When the user selects an item it will be inserted into the XML exactly as it is
displayed.

<xs:value-of select="." ephox:displayas="combo"
ephox:items="iteml, item2, item3"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

Using ephox:displayitems Alone

ephox:displayitems can be used without ephox: items if the type in the schema
uses enumeration facets to specify a list of allowed values. In this case,
ephox:displayitems provides a user friendly form for each enumerated value. If the

176

Using EditLive! for XML Without The
Visual Designer

schema declares an element as:

<xsd:element name="favoriteEditor">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="elx" />
<xsd:enumeration value="elj" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The XSLT designer may wish to provide a more intuitive list of items for the user to
select from. The XSLT snippet will achieve this.

<xs:value-of select="my:favoriteEditor"
ephox:displayitems="EditLive! for XML,EditLive! for Java"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0" />

ephox:readonly Attribute

Introduction

The ephox: readonly attribute allows values to be displayed without making them
editable by the user. The value appears in the output as plain text exactly as it would if
run through a standard XSLT processor. The ephox: readonly attribute can only be
used on value-of elements.

By default elements from an XML document rendered in EditLive! for XML are
editable.

Possible Values

The ephox: readonly attribute requires a boolean value of either true or false.

When set to true EditLive! for XML will display the value of the relevant element as
plain text which will not be editable.

When set to false EditLive! for XML will display the value of the relevant element
from the XML as an editable field.

Example

177

Using EditLive! for XML Without The
Visual Designer

The example below inserts the value of the context node into the display without
making it editable.

<xs:value-of select="." ephox:readonly="true"
xmlns:ephox="http://www.ephox.com/product/editliveforxml/1.0"™ />

178

Chapter 15. Instantiation API

This section of the API guide includes methods and properties which may be used
when instantiating the EditLive! for XML or Visual Designer applets . These method
and properties may only be accessed prior to calling the show method.

EditLive! for XML JavaScript Constructor

Description

This method creates an instance of an Ephox EditLive! for XML Javascript object.

.

Note

This method only applies for EditLive! for XML JavaScript integrations.

Syntax

JavaScrint

new EditLiveXML (strName, intWidth, intHeight);

Parameters

strName A unique string identifier for this instance of EditLive! for XML.
This is a required parameter.

intWidth An integer specifying the width of the applet when displayed.
This is a required parameter.

intWidth An integer specifying the height of the applet when displayed.

This is a required parameter.

Examples

179

Instantiation API

Example 15.1. JavaScript EditLive! Constructor Scripting Example

The following code creates an EditLive! for XML object and assigns the identifier
editlivejs to the JavaScript variable. The object has a unique name of ELApplet1, a
width of 700 pixels and a height of 400 pixels.

var editlivel;
editlivejs = new EditLiveXML ("ELAppletl"™,"700","400") ;

Remarks

The constructor must be called before any operations can occur on the EditLive! for
XML object.

Ephox recommends setting the width and height in pixels, as on Macintosh machines,
if these values are set as percentages and the Web browser window is resized,
EditLive! for XML will not be resized with the window.

Visual Designer JavaScript Constructor

Description

This method creates an instance of the Visual Designer Javascript object.

| i,l Note

This method only applies for the Visual Designer JavaScript integrations.

Syntax

JavaSerint

new VisualDesigner (strName, intWidth, intHeight);

Parameters

strName A unique string identifier for this instance of the Visual Designer.

180

Instantiation API

This is a required parameter.

intWidth An integer specifying the width of the applet when displayed.
This is a required parameter.

intWidth An integer specifying the height of the applet when displayed.

This is a required parameter.

Examples

Example 15.2. JavaScriptt Visual Designer Constructor Scripting Example

The following code creates a Visual Designer object and assigns the identifier
designer to the JavaScript variable. The object has a unique name of vbapplet1, a
width of 700 pixels and a height of 400 pixels.

var designer;
designer = new VisualDesigner ("VDAppletl"™,"700","400") ;

Remarks

The constructor must be called before any operations can occur on the Visual Designer
object.

Ephox recommends setting the width and height in pixels, as on Macintosh machines,
if these values are set as percentages and the Web browser window is resized, the
Visual Designer will not be resized with the window.

addView Method

Description

This method is used to add a view to EditLive! for XML. A view is presented to the
user as a tab within EditLive! for XML. This method can be called multiple times in
order to add multiple views to EditLive! for XML.

181

Instantiation API

» Note
This method cannot be used with the Visual Designer. To set a view for the
Visual Designer the addViewAsText method must be used.

Syntax

JavaSerint

addView (strName, strViewURL) ;

Parameters

strName A string specifying the name for the view being added. This name will
be displayed on the tab representing the view on the interface of
EditLive! for XML.

strViewURL A URL specifying the Web accessible location of the file for this view.
This value can be either a relative or an absolute URL. Relative URLs
are relative to the location of the page in which EditLive! for XML is
embedded.

Examples

Example 15.3. addView Method Example Scripting

The following example demonstrates how to load the views specified by the URLSs
http://yourserver.com/views/viewOne.xsl and ../views/secondView.xsl.
These views are named First Viewand Second View respectively.

JavaScript

var editlivexml = New EditLiveXML ("ELXAppletl","700","400");
editlivexml.addView ("First View","http://yourserver.com/views/viewOne.xsl") ;
editlivexml.addView ("Second View","../views/secondView.xsl");

Remarks

182

Instantiation API

This method can be called multiple times to add multiple views to EditLive! for XML.

Each view added to EditLive! for XML is presented to a user via a tab on the interface.
The tab for the view will be labeled with the value of the strName parameter.

Views can also be added as a string of text via the addViewAsText method.

addViewAsText Method

Description

This method allows a view to be specified as a string of text. The string provided to this
method as a parameter must contain a complete XML stylesheet document for use as a
view within EditLive! for XML or the Visual Designer. The name parameter supplied
with the view provides the name for view which is used to represent the view within
the user interface.

Loading views via the addViewAsText method can reduce the load time of EditLive!
for XML. This can be most easily achieved by using server-side scripting to load the
view file from the server's file system into a scripting string variable which can then be
used when instantiating EditLive! for XML.

. Note

A

When instantiating the Visual Designer this method should be used to add
views to the Visual Designer.

Syntax

JavaSerint

addViewAsText (strName, strViewText) ;

Parameters

strName A string specifying the name for the view being added.

In EditLive! for XML the name will be displayed on the tab
representing the view on the interface.

183

Instantiation API

In the Visual Designer the name will be displayed within the list of
views available within the designer.

strXMLText A string which contains the text of the view (XSL) document to be
added to this instance of EditLive! for XML.

Examples

Example 15.4. addViewAsText Method Example Scripting

The following code would specify that Ephox EditLive! for XML is to include the given
view, the view will be listed with the name view oOne.

JavaScript

editlive.addViewAsText ("View One", "<xs:stylesheet xmlns:xs=...");

L Note

A

The view string parameter for this method must be URL encoded. It is
recommended that a server-side URL encoding function be used if
available. The usage of the JavaScript escape function is not
recommended as the JavaScript escape function does not fully comply
with the URL encoding standard.

Note

[:.

The XSL document in the examples above is incomplete, and will not
function. It is given only as a example to aid understanding. The XSL
document passed to EditLive! for XML via this method should not contain
carriage return or new line characters.

Remarks

The view string parameter for this method must be URL encoded. It is recommended
that a server-side URL encoding function be used if available. The usage of the
JavaScript escape function is not recommended as the JavaScript escape function

184

Instantiation API

does not fully comply with the URL encoding standard.

Loading views via the addViewAsText method can reduce the load time of EditLive!
for XML. This can be most easily achieved by using server-side scripting to load the
view file from the server's file system into a scripting string variable which can then be
used when instantiating EditLive! for XML.

addXSDAsText Method

Description

This method specifies an XML Schema Document to be used with an instance of
EditLive! for XML. This method can be called multiple times in order to supply
EditLive! for XML with several XSDs. This method accepts an XSD as a text string.
Loading XSDs via the addXSDAsText method can reduce the load time of EditLive!
for XML. This can be most easily achieved by using server-side scripting to load the
XSD file from the server's file system into a scripting string variable which can then be
used when instantiating EditLive! for XML.
» Note

A
This property cannot be used with the Visual Designer. To set the XSD for
use with the Visual Designer the XSDAsText property must be used.

Syntax

JavaSerint

addXSDAsText (strXSD) ;

Parameters

strXSD A string which contains a full XSD to be used with this instance of EditLive!
for XML.

. Note

.y

The XSD string should be URL encoded. This can be achieved
with a server side URL encoding method.

185

Instantiation API

Examples

Example 15.5. addXSDAsText Method Example Scripting

The following example adds an XSD for use with EditLive! for XML.

JavaScript

editlivejs.addXSDAsText = "<xsd:schema targetNamespace=...";

. Note

A

The view string parameter for this method must be URL encoded. It is
recommended that a server-side URL encoding function be used if
available. The usage of the JavaScript escape function is not
recommended as the JavaScript escape function does not fully comply
with the URL encoding standard.

Note

[:.

The XSD in the examples above is incomplete, and will not function. It is
given only as a example to aid understanding. The XSD passed to EditLive!
for XML via this method should not contain carriage return or new line
characters.

Remarks

Using this method instead of setting the setXSDURL property may result in faster
load times for EditLive! for XML.

The string parameter for this method must be URL encoded. It is recommended that a
server-side URL encoding function be used if available. The usage of the JavaScript
escape function is not recommended as the JavaScript escape function does not
fully comply with the URL encoding standard.

show Method

Description

186

Instantiation API

This method displays the Ephox EditLive! for XML instance object upon which it is
called in the Web browser.

Syntax

JavaSerint

show () ;

Examples

Example 15.6. show Method Example Scripting

The following code sets only the required properties of an EditLive! for XML applet
and then displays the applet within the Web page.

JavaScript

var editlive Jjs;

editlive js = new EditLiveXML ("ELAppletl","700","400");

editlive js.setDownloadDirectory("../../redistributables/editlivexml");
editlive js.setConfigurationFile ("sample elconfig.xml");

editlive js.setDocument (escape ("<p>Document body contents</p>"));
editlive js.show();

Remarks

Before this method is called, all the required properties of an EditLive! for XML
instance object must be set.

See Also

e ShowAsButton Method

showAsButton Method

Description

187

Instantiation API

This method displays the Ephox EditLive! for XML instance object in the Web browser
as a button. When passed the parameter t rue EditLive! for XML will automatically
open in a popout window, clicking an associated button in the browser will hide the
window. When set to false EditLive! for XML displays as a button which must be
clicked in order for the popout window containing EditLive! for XML to appear.

Syntax

JavaSerint

show (b1lnPopout) ;

Parameters

blnPopout A boolean indicating whether EditLive! for XML should automatically
open in a popout window. When set to t rue EditLive! for XML will
automatically open in a popout window, with an associated button in
the browser, clicking the button will hide the window. When set to
false EditLive! for XML displays as a button which must be clicked in
order for the popout window containing EditLive! for XML to appear.

Examples

Example 15.7. showAsButton Method Example Scripting

The following example demonstrates how to cause EditLive! for XML to automatically

appear in a popout window which has an associated button in the browser for showing
and hiding the window.

JavaScript

var editlive Jjs;

editlive js = new EditLiveXML ("ELAppletl","700","400");

editlive js.setDownloadDirectory("../../redistributables/editlivexml");
editlive js.setConfigurationFile ("sample elconfig.xml");

editlive js.setDocument (escape ("<p>Document body contents</p>"));
editlive js.showAsButton ("true");

188

Instantiation API

Remarks

Before this method is called, all the required properties of an EditLive! for XML
instance object must be set.

When using this method it must be called instead of the show method.

To set the display icons and text for the button created through the use of this method
the following properties can be set:

e ShowButtonIconURL
o ShowButtonText
« HideButtonIconURL

o HideButtonText

AutoSubmit Property

Description

This property specifies the way in which Ephox EditLive! for XML behaves when the
page is submitted. This affects how content is retrieved from EditLive! for XML.

Syntax

JavaSerint

setAutoSubmit (blnSubmit) ;

Parameters
blnSubmit A boolean indicating if EditLive! for XML should attach its content
submission to the onsubmit function.

The default value is true.

Example

189

Instantiation API

Example 15.8. AutoSubmit Property Example Scripting

The following code would inform EditLive! for XML to not attach its content
submission to the onsubmitfunction.

JavaScript

editlivejs.setAutoSubmit (false) ;

Remarks

When attaching its content submission to the onsubmit function EditLive! for XML
populates a hidden field with its contents automatically rather than the developer
calling for the contents explicitly. The name of the hidden field is contained within the
same form as the EditLive! for XML instance and is given the name that was specified
by the developer when the EditLive! for XML instance was created. For example, if the
applet was assigned the ELApplet1 was specified in the above example so EditLive!
would store its contents in the hidden field named ELApplet1. This hidden field is then
posted with the rest of the form data when the submit button is pressed. EditLive! for
XML automatically updates the hidden field by attaching itself to the form's
onsubmit() handler. If there is already a function specified in the onsubmit()
handler then this function will run after the hidden field has been updated. This
means that you can still use the onsubmit() handler to run your own JavaScript
functions. If you use another button/image/event to submit the form by calling
form.submit() the browser will not call the onsubmit() handler and EditLive! for
XML will not populate the hidden field with data. For this reason, please ensure you
use form.onsubmit() to avoid this problem.

When deactivating the onsubmit functionality of EditLive! for XML by setting the
AutoSubmit property to false the developer may wish to retrieve content from
EditLive! for XML using the GetDocument function provided in the EditLive! for
XML JavaScript Run Time API.

BaseURL Property

Description

This property can be used to set the base URL used by EditLive! for XML to resolve
relative URLs e.g. image URLs. The base URL property must be a URL for a virtual
directory. The base URL property should be used in circumstances where it is

190

Instantiation API

impractical to set the <base> element of the configuration file. For example, when a
single XML configuration file is used within a system where EditLive! for XML is used
in multiple instances for editing pages with differing base URLs.

Syntax

JavaSerint

setBaseURL (strBaseURL) ;

Parameters

strBaseURL A string specifying the base URL to be used with this instance of
EditLive! for XML. The URL should map to a virtual directory. The
base URL is used by EditLive! for XML when resolving any relative
URLs.

Example

Example 15.9. BaseURL Property Example Scripting

The following code would set the base URL for an instance of EditLive! for XML to
http://www.yourserver.com/editor/. This URL will be used when resolving all
relative URLs in the EditLive! for XML content and configuration file (e.g. URLSs for
images and links).

JavaScript

editlive Jjs.setBaseURL ("http://www.yourserver.com/editor/");

Remarks

The base URL property must map to a virtual directory on a Web server and be a valid
URL with a trailing /. For example http: //www.yourserver.com/editor/ is a valid
base URL however http://www.yourserver.com/editor is not.

Any value set in the <base> element of the EditLive! for XML configuration takes
precedence over a value set through the base URL property. When using the base URL

191

Instantiation API

property to set the base URL it is recommended that you do not also set a value in the
<base> element of the configuration file.

See Also

e <base> element

ConfigurationFile Property

Description

This property or the ConfigurationText property (but not both) must be set for an
Ephox EditLive! for XML applet to run.

This property specifies the URL at which the XML configuration file for EditLive! for
XML can be found. This file will customize the EditLive! for XML interface. You may
like to look at the ConfigurationText property if you are considering dynamically
generating XML configuration files, but otherwise it is probably simpler to use the
ConfigurationFile property.

Syntax

JavaSerint

setConfigurationFile (strFileURL) ;

Parameters

strFileURL A string which is the URL for where the XML configuration file for this
instance of EditLive! for XML can be requested from.

Examples

Example 15.10. ConfigurationFile Property Example Scripting

The following code would specify that EditLive! for XML is to load with the properties
as specified by the file config.xml which can be found at

192

Instantiation API

http://someserver/xmlconfig/config.xml.

JavaScript

editlivejs.setConfigurationFile ("http://somesever/xmlconfig/config.xml") ;

Remarks

Using the ConfigurationText property to configure EditLive! for XML results in a
faster load time for the EditLive! for XML applet than is achieved through the use of
the ConfigurationFile property.

The ConfigurationFile property is mutually exclusive with the ConfigurationText
property. You should provide either a URL to a configuration file, or pass in the
configuration text in a String format.

See Also

« ConfigurationText property

ConfigurationText Property

Description

Syntax

This property or the ConfigurationFile property (but not both) is required to be set
for an Ephox EditLive! for XML applet to run.

This property specifies the XML configuration text to be used by Ephox EditLive! for
XML. This text will customise the Ephox EditLive! for XML interface. To find out
about how to use XML Configuration files, please read EditLive! for XML
Configuration reference. The ConfigurationText property allows the configuration
of EditLive! for XML to be via a string which contains the configuration XML
document to be used with EditLive! for XML. Loading the configuration for EditLive!
for XML via the ConfigurationText property can reduce the load time of EditLive!
for XML. This can be most easily achieved by using server-side scripting to load the
configuration file from the server's file system into a scripting string variable which
can then be used when instantiating EditLive! for XML.

193

Instantiation API

JavaSerint

setConfigurationText (strXMLText) ;

Parameters

strXMLText A string which contains the text of the XML configuration document
for this instance of Ephox EditLive! for XML.

Examples

Example 15.11. ConfigurationText Property Example Scripting

The following code would specify that Ephox EditLive! for XML is to load with the
given XML Configuration Text.

JavaScript

editlivejs.setConfigurationText ('%3C%$3Fxml%20version%3D%221.0%22%3F%3E...");

- Note

A

The string passed to the JavaScript setConfigurationText property must
be URL encoded. It is recommended that a server-side URL encoding
function be used if available as the JavaScript escape function does not
fully comply with the URL encoding standard.

Note

[.':.

The XML document in the examples above URL encoded and incomplete.
It is given only as an example to aid understanding. The XML document
passed to EditLive! for XML via this method should by URL encoded.

194

Instantiation API

Remarks

Using the ConfigurationText property to configure EditLive! for XML results in a
faster load time for the EditLive! for XML applet than is achieved through the use of
the ConfigurationFile property.

The ConfigurationText property is mutually exclusive with the ConfigurationFile
property. You should provide either a URL to a configuration file, or pass in the
configuration text in a String format.

When using the JavaScript setConfigurationText property the string parameter
must be URL encoded. It is recommended that a server-side URL encoding function
be used if available as the JavaScript escape function does not fully comply with the
URL encoding standard.

See Also

« ConfigurationFile property

Cookie Property

Description

This property stipulates the name of the cookie to be used by Ephox EditLive! for
XML.

Syntax

JavaSerint

setCookie (strCookie) ;

Parameters

strCookie A string value indicating the name of the Cookie. The value should be
equivalent to a JavaScript value, for example "document . cookie".

Examples

195

Instantiation API

Example 15.12. Cookie Property Example Scripting

The following code would set the Cookie property to "document.cookie".

JavaScript

editlivejs.setCookie ("document.cookie") ;

Remarks

The value used to set the Cookie property should be valid JavaScript. It is
recommended that the value of document . cookie is used.

The value passed to this function will be evaluated as JavaScript. Thus, using the value
of document . cookie with this function will result in the cookie for the HTML page
being used by EditLive! for XML.

DebuglLevel Property

Description

This property stipulates the level of debugging to be used when running EditLive! for
XML.

Syntax

JavaSerint

setDebuglevel (strDebug) ;

Parameters

strDebugLevel A string specifying the level of debugging to run EditLive! for XML
with. There are several distinct possible debug levels:

e fatal

196

Instantiation API

* error
* warn
e info
¢ debug
e http

The default value is info.

Examples

Example 15.13. DebugLevel Property Example Scripting

The following code would specify that the debug level is set to debug.

JavaScript

editlivejs.setDebuglLevel ("debug") ;

Remarks

All information produced via the setting of the debug level is outputted to the Java
console.

The following is a list of the possible debug levels in order of increasingly detailed
output:

fatal This debugging level displays only error messages which prevent EditLive!
for XML from continuing, thus resulting in termination of the program.

error This debugging level displays error messages for cases in which EditLive! for
XML can continue despite the error. However, the current EditLive! for XML
operation will most likely fail due to the relevant error. This debugging level
also displays all the debugging information that would be displayed should
the debugging level be set to fatal.

warn This debugging level displays messages indicating that an unexpected error

197

Instantiation API

has occurred and this may cause EditLive! for XML to behave in an
unexpected manner. However, the current EditLive! for XML operation will
most likely be completed successfully. This debugging level also displays all
the debugging information that would be displayed should the debugging
level be set to error.

info This debugging level displays messages indicating that an event of some
significance has occurred (e.g. a server has requested authentication details).
EditLive! for XML expects such events and deals with them accordingly. This
debugging level also displays all the debugging information that would be
displayed should the debugging level be set to warn.

debug This debugging level displays any information which may be useful for
debugging purposes. This debugging level also displays all the debugging
information that would be displayed should the debugging level be set to

info.

http This debugging level displays communications using the HTTP client
component of EditLive! for XML (i.e. client server communications). This
debugging level is most useful for tracking problems associated with HTTP
connections. This debugging level also displays all the debugging information
that would be displayed should the debugging level be set to debug.

Document Property

Description

This property specifies the initial document contents of the Ephox EditLive! for XML
applet.

A

Note

This property cannot be used with the Visual Designer.

Syntax

JavaScrint

setDocument (strDocument) ;

198

Instantiation API

Parameters

strDocument A string specifying the initial document contents of the EditLive! for
XML applet.

The default value is an empty string.

Example

Example 15.14. Document Property Example Scripting

The following code would set the initial document contents of EditLive! for XML to be
equalto "Initial contents of Ephox EditLive!".

JavaScript

editlivejs.setDocument (escape ("<HTML><HEAD><TITLE>Example</TITLE></HEAD>
<BODY><P>Initial contents of Ephox EditLive!</P></BODY></HTML>")) ;

o Note

e

The string passed to the JavaScript setDocument property must be URL
encoded or encoded using the JavaScript escape function. It is
recommended that a server-side URL encoding function be used if
available as the JavaScript escape function does not fully comply with the
URL encoding standard.

Remarks
When using the JavaScript setDocument property the string parameter must be
URL encoded or encoded using the JavaScript escape function. It is recommended

that a server-side URL encoding function be used if available as the JavaScript escape
function does not fully comply with the URL encoding standard.

DownloadDirectory Property

Description

199

Instantiation API

This property must be set for all EditLive! for XML global objects.

This property specifies the directory in which the Ephox EditLive! for XML source files
can be found on the server.

Syntax

JavaSerint

setDownloadDirectory (strDownloadDirectory) ;

Parameters
strDownloadDirectory A string specifying the location of the EditLive! for XML
source files and JavaScript library.
Examples

Example 15.15. DownloadDirectory Property Example Scripting

The following code would specify that the source files were in a directory called
redistributables/editlivexml on the Web server.

JavaScript

editlivejs.setDownloadDirectory("../../redistributables/editlivexml") ;

Remarks

This property must be set when instantiating EditLive! for XML

HideButtonIconURL Property

Description

This property specifies the URL at which the icon to be used with the hide button for
EditLive! for XML. This function can only be used when displaying EditLive! for XML

200

Instantiation API

as a button in the browser using the ShowAsButton method.

Syntax

JavaSerint

setHideButtonIconURL (strImageURL) ;

Parameters

strimageURL A string which is the URL for where the icon image for the hide
button for this instance of EditLive! for XML can be requested from.

Examples

Example 15.16. HideButtonIlconURL Property Example Scripting

The following code would specify that EditLive! for XML is to use the image

http://server.com/icons/hideButton.gif when displaying the hide button for
EditLive! for XML.

JavaScript

editlivejs.setHideButtonIconURL ("http://server.com/icons/hideButton.gif") ;

editlivejs.showAsButton ("true");

Remarks

This function should only be used when the ShowAsButton method is used to
display EditLive! for XML.

See Also

e ShowAsButton method

« ShowButtonText property

201

Instantiation API

« ShowButtonlconURL property

« HideButtonText property

HideButtonText Property

Description

This property specifies the text to be used with the hide button for EditLive! for XML.
This function can only be used when displaying EditLive! for XML as a button in the
browser using the ShowAsButton method.

Syntax

JavaSerint

setHideButtonText (strFileURL) ;

Parameters
strButtonText A string which is the text to be displayed on the hide button for
this instance of EditLive! for XML when it is displayed as a button.
Examples

Example 15.17. ShowButtonIconURL Property Example Scripting

The following code would specify that EditLive! for XML is to use the text Hide
EditLive! for xML when displaying the hide button for EditLive! for XML.

JavaScript

editlivejs.setHideButtonText (escape ("Hide EditLive! for XML"));

editlivejs.showAsButton ("true");

202

Instantiation API

Note

[:.

The string passed to the JavaScript setHideButtonText property must be
URL encoded. It is recommended that a server-side URL encoding function
be used if available as the JavaScript escape function does not fully
comply with the URL encoding standard.

Remarks

This function should only be used when the ShowAsButton method is used to
display EditLive! for XML.

The string passed to the JavaScript setHideButtonText property must be URL
encoded. It is recommended that a server-side URL encoding function be used if
available as the JavaScript escape function does not fully comply with the URL
encoding standard.

See Also

+ ShowAsButton method
« ShowButtonText property
« ShowButtonlconURL property

« HideButtonIconURL property

JREDownloadURL Property

Description

This property sets the location to download the required Java Runtime Environment
from if it is needed on the client machine. This property can be used to specify a
specific JRE for use with EditLive! for XML.

1 Important

When deploying the JRE from a location other than Sun Microsystems'
servers this property must be set.

203

Instantiation API

Syntax

JavaSerint

setJREDownloadURL (strJREURL) ;

Parameters

strJREURL A string containing the location to download the Java Runtime
Environment from if it is required to be installed.

Examples

Example 15.18. JREDownloadURL Property Example Scripting

The following sets the JRE download URL to be
../JREDownload/j2re-1 4 l-windows-i586-i.exe.

JavaScript

editlivejs.setJREDownloadURL ("../JREDownload/j2re-1 4 l-windows-i586-i.exe");
editlivejs.setLocalDeployment (true) ;
editlivejs.setMinimumJREVersion ("1.4.0");

Remarks

This may be a relative or absolute URL.

If a relative URL is specified then this will be relative to the URL of the page in which
the EditLive! for XML applet is embedded.

The LocalDeployment property must be set to true.

The MinimumdJREVersion property must be set to a JRE version which has a
version number less than or equal to that of the JRE found at the location specified in
the JREDownload URL property.

The JREDownloadURL property must specify the URL of a JRE installer
executable.

204

Instantiation API

See Also

+ LocalDeployment Property

« MinimumJREVersion Property

LocalDeployment Property

Description

This property stipulates where to download the Java Run Time Environment (JRE)
from, if it is not already installed on the client machine. If this property is set to true,
the JRE will be downloaded and installed from the server directory stipulated by the
JREDownloadURL property, if required on the client machine. If this property is
set to false, the JRE will be downloaded and installed from the Sun Microsystems
[http://www.sun.com] Web site, if required on the client machine.

1 Important

When setting this property to t rue it should be ensured that the
JREDownloadURL is set to the location of the JRE installer with the the
JRE will be deployed.

Syntax

JavaSerint

setLocalDeployment (blnLocalDeployment) ;

Parameters

blnLocalDeployment A boolean value indicating if the JRE should be deployed
from Sun Microsystems' servers if it is not already present.
When set to false the JRE will be deployed from Sun
Microsystems' servers.

The default value is false.

205

http://www.sun.com

Instantiation API

Example

Example 15.19. LocalDeployment Property

The following code would set the LocalDeployment property to t rue.

JavaScript

editlivejs.setLocalDeployment (true) ;

See Also

« DownloadDirectory property

Locale Property

Description

Explicitly sets the locale that EditLive! for XML should use for the interface
translation, date formats and other locale dependant properties. If this property is not
set the locale for EditLive! for XML will be set according to the locale of the client's
system properties.

If the set locale or the locale of the client's system is not supported by EditLive! for
XML the English translation of the user interface is used by default.

Valid locales for EditLive! for XML include:

+ EN - English
« ES - Spanish

¢ DE - German
e IT - Italian

¢ KO - Korean

« FR -French

206

Instantiation API

+ CS-Czech
» ZH - Simplified Chinese

« DA - Danish

Syntax

JavaSerint

setLocale (strLocale);

Parameters
strLocale Two letter ISO-369 compliant string representing the locale for the

interface translation.
By default, if the interface translation is available for a client's locale the
interface appears in this translation unless explicitly set. If there is no
translation available for a client's locale then the English interface
translation is used.

Examples

Example 15.20. Locale Property Example Scripting

The following code would set the locale of EditLive! for XML to German. This means
that EditLive! for XML will run with the German interface translation.

JavaScript

editlivejs.setLocale ("DE") ;

Remarks

If the locale is not set then the locale used by the client will be as specified by their
system properties. If the locale of the client machine is not supported EditLive! for

207

Instantiation API

XML will default to the English interface translation.

If the specified locale is not supported EditLive! for XML will default to the English
interface translation.

The EditLive! for XML interface has been translated into the following languages for
the listed locales:

+ EN - English

+ ES - Spanish

¢ DE - German

e IT-Ttalian

¢ KO - Korean
« FR-French
+ CS-Czech

« DA - Danish

« ZH - Simplified Chinese

« AR- Arabic

MinimumJREVersion Property

Description

This attribute specifies the minimum version of the Java Runtime Environment
required to run EditLive! for XML. It should be noted that EditLive! for XML should
be used with JRE version 1.4.0 and above.

Syntax

JavaSerint

setMinimumJREVersion (strJREVersion) ;

208

Instantiation API

Parameters
strJREVersion A string defining the version number of the minimum JRE version
which EditLive! for XML is to run with.
The default valueis 1.4.0.
Examples

Example 15.21. MinimumJREVersion Property Example Scripting

The following sets the minimum JRE version to be 1.4.1

JavaScript

editlivejs.setMinimumJREVersion ("1.4.1");

Remarks

Currently supported JRE versions are 1.4.0 and above.

Care should be taken when using this property in conjunction with the
JREDownloadURL property. See the JREDownloadURL property for more
information.

See Also

« JREDownloadURL Property

OnInitComplete Property

Description

This property can be used to call a JavaScript function once EditLive! for XML has
finished loading. Once EditLive! for XML has finished loading the JavaScript function
defined by the OnInitComplete property is used as a callback.

209

Instantiation API

Syntax

JavaScerint

setOnInitComplete (strCallBack) ;

Parameters
strCallBack A string specifying the name of a JavaScript function to use as the
callback function once EditLive! for XML has finished loading.
Example

Example 15.22. OnInitComplete Property JavaScript Callback Function Example

The following code provides the JavaScript callback function which will set the body
content of EditLive! for XML once the applet has finished loading. The callback
function is named AppletLoaded. The content of EditLive! for XML will be set to Body
content set at runtime.The name of the EditLive! for XML Applet JavaScript
object is ELAppletl js.

» Note

.y

The AppletLoaded function uses the JavaScript runtime API to set the
body content of EditLive! for XML. The string used to set the body content
in this example is URL encoded.

<script language="javascript">
function AppletLoaded () {
ELAppletl js.SetDocument ("%$3Cp%3ESet+content+at+runtime33C$2Fp%3E") ;
}
</script>

Example 15.23. OnInitComplete Property Example Scripting

The following example instantiate a version of EditLive! for XML and assign a function

210

Instantiation API

to be used as a callback once it has finished loading. The callback used in the example
code is AppletLoaded which is described by the code above.

JavaScript

var ELAppletl js;

ELAppletl js = new EditLiveXML ("ELAppletl","700","400");
ELAppletl js.setConfigurationFile ("sample elconfig.xml");
ELAppletl js.setOnInitComplete ("AppletLoaded") ;

OutputCharset Property

Description
This property specifies the output character set for the Visual Designer. Both the data
model and the views output by the Visual Designer will be encoded by the Visual

Designer using the provided output character set. If no output character set is
specified the uTF-8 character set will be used.

Syntax

JavaSerint

setOutputCharset (strCharset) ;

Parameters

strCharset A string specifying the character set used by the Visual Designer when
it outputs the data model and views. There is a wide range of
supported character sets. Supported character sets include:

ASCII American Standard Code for Information Interchange
CP1252 Windows Latin-1

UTF8 Eight-bit Unicode Transformation Format

UTF-16 Sixteen-bit Unicode Transformation Format

211

Instantiation API

ISO2022CN
[SO2022JP
[SO2022KR
ISO8859_1
ISO8859_2
ISO8859_3
ISO8859_4
ISO8859_5
ISO8859_6
ISO8859_7
ISO8859_8
ISO8859_9
ISO8859_13
ISO8859_15

SJIS

ISO 2022 CN, Chinese

JIS X 0201, 0208 in ISO 2022 form, Japanese
ISO 2022 KR, Korean

ISO 8859-1, Latin alphabet No. 1
ISO 8859-2, Latin alphabet No. 2
ISO 8859-3, Latin alphabet No. 3
ISO 8859-4, Latin alphabet No. 4
ISO 8859-5, Latin/Cyrillic alphabet
ISO 8859-6, Latin/Arabic alphabet
ISO 8859-7, Latin/Greek alphabet
ISO 8859-8, Latin/Hebrew alphabet
ISO 8859-9, Latin alphabet No. 5
ISO 8859-13, Latin alphabet No. 7
ISO 8859-15, Latin alphabet No. 9

Shift-JIS, Japanese

A full list of character sets supported by version 1.4.2 of the Java
Runtime Environment can be found on the Sun Microsystems Java

Web site

[http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html].

Examples

Example 15.24. OutputCharset Property Example Scripting

The following example specifies that the XSD and XSLs should be output using the

ASCII character set.

JavaScript

212

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Instantiation API

designer.setOutputCharset ("ASCII") ;

Remarks

If no output character set is specified the uTr-8 character set will be used.

Preload Property

Description

This property can be used when preloading EditLive! for XML. Once EditLive! for
XML has finished loading the JavaScript function defined by the Preload property is
used as a callback.

Syntax

JavaSerint

setPreload(strCallBack) ;

Parameters
strCallBack A string specifying the name of a JavaScript function to use as the
callback function once EditLive! for XML has finished loading.
Example

Example 15.25. Preload JavaScript Callback Function

The following code provides the JavaScript callback function which will display an
alert dialog once EditLive! for XML has finished loading. The callback function is
nanuxipreloadReturn.

<script language="javascript">
function preloadReturn () {
alert ("EditLive! has finished preloading.");
}

213

Instantiation API

</script>

Example 15.26. Preload Property Example Scripting

The following example instantiate a version of EditLive! for XML and assign a function
to be used as a callback once it has finished loading. The callback used in the example
code is preloadReturn which is described by the code above. The example below
instantiates an applet which is not visible, thus, it may be used in cases where the
applet is to be preloaded, to decrease load times for future instances, but not visible.

JavaScript

var editlivejs;

editlivejs = new EditLiveXML ("ELAppletl","1","1");
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ("<p> </p>");
editlivejs.setPreload("preloadReturn") ;

Remarks

The Preload property can be used to assist with the preloading of EditLive! for XML.
This can improve the performance of EditLive! for XML within a Web application.
Preloading EditLive! for XML causes the browser's XML Plug-In and the EditLive! for
XML classes to be loaded.

It is recommended that, when preloading EditLive! for XML, you set the height and
width of the EditLive! for XML applet so they are both one pixel. This will ensure that
the EditLive! for XML applet is not visible on the page.

Preloading EditLive! for XML can be performed on any page within a Web application.

ShowButtonIconURL Property

Description

This property specifies the URL at which the icon to be used with the show button for
EditLive! for XML. This function can only be used when displaying EditLive! for XML
as a button in the browser using the ShowAsButton method.

214

Instantiation API

Syntax

JavaSerint

setShowButtonIconURL (strImageURL) ;

Parameters

strimageURL A string which is the URL for where the icon image for the show
button for this instance of EditLive! for XML can be requested from.

Examples

Example 15.27. ShowButtonlconURL Property Example Scripting

The following code would specify that EditLive! for XML is to use the image

http://server.com/icons/showButton.gif when displaying the show button for
EditLive! for XML.

JavaScript

editlivejs.setShowButtonIconURL ("http://server.com/icons/showButton.gif") ;

editlivejs.showAsButton ("true");

Remarks

This function should only be used when the ShowAsButton method is used to
display EditLive! for XML.

See Also

« ShowAsButton method
« ShowButtonText property

+ HideButtonlconURL property

215

Instantiation API

« HideButtonText property

ShowButtonText Property

Description

This property specifies the text to be used with the show button for EditLive! for XML.
This function can only be used when displaying EditLive! for XML as a button in the
browser using the ShowAsButton method.

Syntax

JavaSerint

setShowButtonText (strFileURL) ;

Parameters
strButtonText A string which is the text to be displayed on the show button for
this instance of EditLive! for XML when it is displayed as a button.
Examples

Example 15.28. ShowButtonIconURL Property Example Scripting

The following code would specify that EditLive! for XML is to use the text show
EditLive! for xML when displaying the show button for EditLive! for XML.

JavaScript

editlivejs.setShowButtonText (escape ("Show EditLive! for XML"));

editlivejs.showAsButton ("true") ;

216

Instantiation API

Note

[.':.

The string passed to the JavaScript setShowButtonText property must
be URL encoded. It is recommended that a server-side URL encoding
function be used if available as the JavaScript escape function does not
fully comply with the URL encoding standard.

Remarks

This function should only be used when the ShowAsButton method is used to
display EditLive! for XML.

The string passed to the JavaScript setShowButtonText property must be URL
encoded. It is recommended that a server-side URL encoding function be used if
available as the JavaScript escape function does not fully comply with the URL
encoding standard.

See Also

« ShowAsButton method
« ShowButtonlconURL property
+ HideButtonlconURL property

« HideButtonText property

ShowSystemRequirementsError Property

Description

This property specifies the way in which Ephox EditLive! for XML reacts when a client
machine does not match the system requirements needed to run EditLive! for XML.

Syntax

JavaSerint

setShowSystemRequirementsError (blnShowError) ;

217

Instantiation API

Parameters

blnShowError A boolean indicating if an error message should be displayed within
a page if EditLive! for XML is not able to load due to the client
system not meeting the EditLive! for XML system requirements.
When set to true an error message will be displayed.

The default value is true.

Examples

Example 15.29. ShowSystemRequirementsError Property Example Scripting

The following code will cause no error message to be displayed when a client machine
does not meet the system requirements needed to run EditLive! for XML.

JavaScript

var editlivejs;
editlivejs = new EditLiveXML ("ELAppletl"™,"700","400") ;
editlivejs.setShowSystemRequirementsError (false) ;

Remarks

When a client machine does not meet the system requirements needed to run
EditLive! for XML a text area will be displayed where the instance of EditLive! for
XML would normally be. In addition to this, by default, an error message will also be
displayed indicating that the client machine does not meet the system requirements
for EditLive! for XML. This error message disabled by setting the
ShowRequirementsError property to false.

The displaying of a text area in place of EditLive! for XML on a client machine which
does not meet the system requirements of EditLive! for XML cannot be disabled.

UseWebDAV Property

Description

This property specifies whether the EditLive! for XML should make its WebDAV
functionality available to users for use with images and hyperlinks.

218

Instantiation API

Syntax

JavaSerint

setUseWebDAV (b1nWebDAV) ;

Parameters

blnWebDAV A boolean indicating if EditLive! for XML should make the WebDAV
functionality available to users for image and hyperlink insertion.

The default value is false.

Examples

Example 15.30. UseWebDAYV Property Example Scripting

The following code would inform EditLive! for XML to make the WebDAV
functionality available to users.

JavaScript

var editlivejs;
editlivejs = new EditLiveXML ("ELAppletl"™,"700","400") ;
editlivejs.setUseWebDAV (true) ;

Remarks

When making EditLive! for XML's WebDAV functionality available to users EditLive!
for XML must also be configured correctly via the EditLive! for XML configuration.
The <repository> XML element contains the relevant configuration information for
using a WebDAYV repository with EditLive! for XML.

See Also

» <repository> Configuration Element

219

Instantiation API

XSDAsText Property

Description

This property specifies an XML Schema Document to be used with an instance of
EditLive! for XML. This property accepts an XSD as a text string. Loading an XSD as
text is the only way an XSD can be loaded into the Visual Designer. This can be most
easily achieved by using server-side scripting to load the XSD file from the server's file

system into a scripting string variable which can then be used when instantiating the
Visual Designer.

» Note

.y

This property differs from the addXSDAsText method in that it can only
be used with the Visual Designer and can only be called once.

Syntax

JavaSerint

setXSDAsText (strXSD) ;

Parameters

strXSD A string which contains a full XSD to be used with this instance of the Visual
Designer.

. Note

.y

The XSD string should be URL encoded. This can be achieved
with a server side URL encoding method.

Examples

Example 15.31. XSDAsText Property Scripting Example

The following example adds an XSD for use with the Visual Designer.

220

Instantiation API

JavaScript

designerjs.setXSDAsText = "escape (<xsd:schema targetNamespace=...");

» Note

A

The XSD in the example above is incomplete, and will not
function. It is given only as a example to aid understanding.
The XSD string passed to the Visual Designer via this
property should not contain carriage return or new line
characters.

Remarks

The string parameter for this method must be URL encoded. It is recommended that a
server-side URL encoding function be used if available. The usage of the JavaScript
escape function is not recommended as the JavaScript escape function does not
fully comply with the URL encoding standard.

XSDURL Property

Description

This property specifies the XML Schema Document(s) to be used with an instance of
EditLive! for XML. The schema document(s) specify the data structure and data
restrictions for the form.

. Note

A

This property cannot be used with the Visual Designer. To set the XSD for
use with the Visual Designer the XSDAsText property must be used.

Syntax

JavaSerint

setXSDURL (strXSDURL) ;

221

Instantiation API

Parameters

strXSDURL A string specifying a list of XML Schema Documents (XSDs) to be used
within this instance of EditLive! for XML. When specifying multiple
XSDs they should be separated by a single whitespace character.

Examples
Example 15.32. XSDURL Property Example Scripting
The following example specifies three XSDs for use with an instance of
EditLive! for XML.
JavaScript
editlive js.setXSDURL = "../XSDs/xsdOne.xsd
../XSDs/xsdTwo.xsd http://server/XSDs/xsdThree.xsd";
Remarks

The URL(s) specified may be relative or absolute.

When using relative URLs the URLSs will be considered as being relative to the URL of
the page in which EditLive! for XML is embedded.

222

Chapter 16. JavaScript Runtime API

This section of the API guide includes functions which may be called during runtime
for the EditLive! for XML or Visual Designer applets.

GetCharCount Function

Description
This function obtains a count of the number of characters present within the EditLive!
for XML applet. It counts the number of characters which are contained within

controls on the current view. This function takes the name of a JavaScript function as
its only parameter.

Syntax

JavaSerint

GetCharCount (strJSFunct) ;

Parameters

strJSFunct The name of the function which receives the character count obtained
from the EditLive! for XML applet.

Example

Example 16.1. GetCharCount Runtime Function Example

The following code first creates a JavaScript function which is to be used as the
parameter for the GetCharCount function. The JavaScript function will display the
character count of the EditLive! for XML applet in a JavaScript alert dialog. The
GetCharCount function will be associated with a HTML button. The name of the
EditLive! for XML applet is editliveis.

<html>
<head>
<title>EditLive! for XML JavaScript Example</title>

223

JavaScript Runtime API

<!--TInclude the EditLive! for XML JavaScript Library-->
<script src="editlivexml/editlivexml.js" language="JavaScript">
</script>
<script language="JavaScript">
function charCountAlert (src) {
alert ('Character Count: '+src);
}
</script>
</head>
<body>
<form name="exampleForm">
<hl>Instance of EditLive! for XML</hl>
<script language="JavaScript">
var editlivejs;
editlivejs = new EditLiveXML ("editlive", 600 , 400);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setlLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ('<p>There are 51 characters in
this instance of EditLive! for XML</p>"'));
editlivejs.show();
</script>

<p>Click this button to obtain a character count</p>
<input type="button" wvalue="Character Count"
onClick="editlive]js.GetCharCount ('charCountAlert');"/>
</form>
</body>
</html>

GetDocument Function

Description

This function retrieves the entire contents of the EditLive! for XML applet. This
function takes the name of a JavaScript function as its only parameter.

Syntax

JavaSerint

GetDocument (strJSFunct, [blnUploadImages]) ;

224

JavaScript Runtime API

Parameters

strJSFunct This is a required parameter.

The name of the JavaScript function which receives the
retrieved EditLive! for XML applet contents.

blnUploadImages This is an optional parameter.

This is a boolean which indicates whether images should be
uploaded to the server when this function is called. The
uploading of images will occur immediately before the content
is retrieved.

The default value is false.

Example

Example 16.2. GetDocument Runtime Function Example

The following code first creates a JavaScript function which is to be used as the
parameter for the GetDocument function. The JavaScript function will save the
retrieved contents to a <TEXTAREA> with the name documentContents. The
GetDocument function will be associated with a HTML button. The name of the
EditLive! for XML applet is edit1ivejs. Images in EditLive! for XML will be
uploaded to the server when GetDocument is called.

<html>
<head>
<title>EditLive! for XML JavaScript Example</title>
<!--Include the EditLive! for XML JavaScript Library-->
<script src="editlivexml/editlivexml.js" language="JavaScript">
</script>
<script language="JavaScript">
function retrieveDocument (src) {
document.exampleForm.documentContents.value = src;
}
</script>
</head>
<body>
<form name="exampleForm">
<p>EditLive! for XML contents will appear here</p>
<!--Create a textarea to save the applet contents to-->
<p><textarea name="documentContents" cols="40" rows="10">

225

JavaScript Runtime API

</textarea></p>
<p>Click this button to retrieve applet contents</p>
<p><input type="button" name="buttonl" value="Retrieve Contents"
onClick="editlive]js.GetDocument ('retrieveDocument', true);"/></p>
<!--Create an instance of EditLive! for XML-->
<script language="JavaScript">
var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ('<html><body><p>Some initial
text</p></body></html>")) ;
editlivejs.show();
</script>
</form>
</body>
</html>

Remarks
When uploading locally stored images to the relevant Web server for an instance of

EditLive! for XML ensure that the b1nUploadImages parameter is set to t rue when
calling the GetDocument function.

GetSelectedText Function

Description

This function retrieves the currently selected text within the EditLive! for XML applet.
The function will retrieve the currently selected text and any inline tags within the
current selection, it will not retrieve the parent tags of the selected text. This function
takes the name of a JavaScript function as its only parameter.

Syntax

JavaSerint

GetSelectedText (strJSFunct) ;

226

JavaScript Runtime API

Parameters

strJSFunct This is a required parameter.

The name of the JavaScript function which receives the retrieved
selected text.

Example

Example 16.3. GetSelectedText Runtime Function Example

The following code first creates a JavaScript function (retrieveSelectedText) which
is to be used as the parameter for the GetSelectedText function. The JavaScript
function will save the retrieved text to a <TExTAREA> with the name selectedText.
The GetSelectedText function will be associated with a HTML button. The name of
the EditLive! for XML applet is editlivejs.

<head>
<title>EditLive! for XML JavaScript Example</title>
<!--Include the EditLive! for XML JavaScript Library-->
<script src="editlivexml/editlivexml.js" language="JavaScript">

</script>

<script language="JavaScript">

function retrieveSelectedText (src) {
document.exampleForm.selectedText.value = src;

}

</script>
</head>
<body>
<form name="exampleForm">

<p>EditLive! for XML contents will appear here</p>
<!--Create a textarea to save the selected text to-->
<p><textarea name="selectedText" cols="40" rows="10">

</textarea></p>

<p>Click this button to retrieve applet contents</p>
<p><input type="button" name="buttonl" value="Retrieve Contents"

onClick="editlivejs.GetSelectedText ('retrieveSelectedText') ;" /></p>

<!--Create an instance of EditLive! for XML-->
<script language="JavaScript">
var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;

227

JavaScript Runtime API

editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ('<html><body><p>Some initial

text</p></body></html>")) ;
editlivejs.show();

</script>
</form>
</body>
</html>

Remarks

This function is designed for use when selecting text within a single parent block tag.
Using the function outside of this context may result in unexpected behavior.

If using this function with selections which span multiple block tags the opening
parent tag of the block at the start of the selection and the closing parent tag of the
block at the end of the selection will both be stripped from the retrieved content. For
example:

If the following markup existed inside an instance of EditLive! for XML:

<p>This is the START first paragraph</p>
<p>This paragraph is the second paragraph</p>
<p>This is the third paragraph and END contains some bold text</p>

And the selection extended from the word sTarT in the first paragraph to the word
END in the last paragraph the following content would be returned:

START first paragraph</p>
<p>This paragraph is the second paragraph</p>
<p>This is the third paragraph and END

» Note

A

The GetSelectedText function is designed for use when selecting text
within a single parent block tag. Using the function outside of this context
may result in unexpected behavior and is not recommended.

228

JavaScript Runtime API

GetWordCount Function

Description
This function obtains a count of the number of words present within the EditLive! for
XML applet. It counts the number of words which are contained within controls on the

current view. This function takes the name of a JavaScript function as its only
parameter.

Syntax

JavaSerint

GetWordCount (strJSFunct) ;

Parameters
strJSFunct The name of the function which receives the word count obtained from
the EditLive! for XML applet.
Example

Example 16.4. GetWordCount Runtime Function Example

The following code first creates a JavaScript function which is to be used as the
parameter for the GetWordCount function. The JavaScript function will display the
word count of the EditLive! for XML applet in a JavaScript alert dialog. The
GetWordCount function will be associated with a HTML button. The name of the
EditLive! for XML applet is editlivejs.

<html>
<head>

<title>EditLive! for XML JavaScript Example</title>
<!--Include the EditLive! for XML JavaScript Library-->
<script src="editlivexml/editlivexml.js" language="JavaScript">
</script>
<script language="JavaScript">

function wordCountAlert (src) {

alert ('Word Count: '+src);

229

JavaScript Runtime API

</script>
</head>
<body>
<form name="exampleForm">
<!--Create an instance of EditLive! for XML-->
<hl>Instance of EditLive! for XML</hl>
<script language="JavaScript">
var editlivejs;
editlivejs = new EditLiveXML ("editlive", 600 , 400);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setlLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlive]js.setDocument (escape ('<p>There are 11 words in this
instance of EditLive! for XML</p>'"));
editlivejs.show();
</script>

<p>Click this button to obtain a word count</p>
<input type="button" wvalue="Word Count"
onClick="editlive]js.GetWordCount ('wordCountAlert') ;" />
</form>
</body>
</html>

InsertHTMLAtCursor Function

Description

This function inserts developer specified HTML at the cursor within the EditLive! for
XML applet. This function takes a JavaScript string as its only parameter.

| i,l Note

This function will only work whilst the cursor is placed within an XHTML
section within EditLive! for XML.

Syntax

JavaSerint

InsertHTMLAtCursor (strHTML) ;

230

JavaScript Runtime API

Parameters

strtHTML The string containing the HTML to be inserted at the cursor within the
EditLive! for XML applet.
L Note
A
This string must be URL encoded. It is recommended that this
encoding is done via a server-side URL encoding method. It can

be achieved using the JavaScript escape function, however,
this is not recommended as the escape function does.

Example

Example 16.5. InsertHTMLAtCursor Runtime Function Example

The following code creates a <TEXTAREA>, named htmlToInsert, that will have its
contents inserted into an instance of EditLive! for XML at the cursor position via the
InsertHTMLAtCursor function. The InsertHTMLAtCursor function will be
associated with a HTML button. The name of the EditLive! for XML applet is

editlivejs.

<HTML>
<HEAD>
<TITLE>EditLive! for XML JavaScript Example</TITLE>
<!--Include the EditLive! for XML JavaScript Library-->
<SCRIPT src="editlivexml/editlivexml.js" language="JavaScript">
</SCRIPT>
</HEAD>
<BODY>
<FORM name = exampleForm>
<P>EditLive! for XML contents will be loaded from here</P>
<!--Create a textarea to load the applet contents from-->
<P>
<TEXTAREA name="htmlToInsert" cols="40" rows="10">
<p>Content to be inserted</p>
</TEXTAREA>
</P>
<P>Click this button to insert XHTML at the cursor
in EditLive!</P>
<P>
<INPUT type="button" name="buttonl" value="Insert XHTML"
onClick="editlivejs.InsertHTMLAtCursor (escape (

231

JavaScript Runtime API

document.exampleForm.htmlToInsert.value

)) ">
</P>
<!--Create an instance of EditLive! for XML-->
<SCRIPT language="JavaScript">
Ll==
var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ("<P>This is EditLive!</P>"));
editlivejs.show();
-—>
</SCRIPT>
</FORM>
</BODY>
</HTML>

InsertHyperlinkAtCursor Function

Description

This function applies a developer specified hyperlink to the text selected within
EditLive! for XML. If no text is selected then the word in which the cursor is currently
located will be selected and a hyperlink applied to it (this is the same functionality as
the Insert Hyperlink button in EditLive! for XML). The first argument of this function
must be the URL corresponding to the hyperlink, this argument is mandatory. This
function can also be used with an optional list of XHTML attributes as arguments.
These arguments are then used as attributes for the hyperlink (<a>) tag and therefore
must be valid XHTML attribute-value pairs.

. Note
A
In EditLive! for XML the InsertHyperlinkAtCursor function applies
when the cursor is within an XHTML section of the XML document.

Syntax

JavaSerint

InsertHyperlinkAtCursor (strHyperlink, [strAttribute]*);

232

JavaScript Runtime API

Parameters
strHyperlink This is a required parameter.
This string contains the hyperlink to be inserted at the cursor
within the EditLive! for XML applet.
strAttribute This is an optional parameter.
A valid XHTML attribute-value pair for the <a> (hyperlink)
XHTML element. Name value pairs must appear as they would
within the XHTML source (i.e. with correct use of quotation
marks).
Example

Example 16.6. InsertHyperlinkAtCursor Runtime Function Examples

The following code creates a text <INPUT>, named hyperlinkToInsert, that will have
its contents inserted into an instance of EditLive! for XML at the cursor position via
the InsertHyperlinkAtCursor function. The InsertHyperlinkAtCursor
function will be associated with a HTML button. The name of the EditLive! for XML
appletis editliveis.

<HTML>
<HEAD>

<TITLE>EditLive! for XML JavaScript Example</TITLE>

<!--Include the EditLive! for XML JavaScript Library-->

<SCRIPT src="editlivexml/editlivexml.js" language="JavaScript">
</SCRIPT>

</HEAD>

<BODY>
<FORM name = exampleForm>
<P>The selected hyperlink will be inserted into EditLive! for XML</P>
<!--Create a text input to load the applet contents from-->

<P>
<SELECT name="hyperlinkToInsert" size=3>
<OPTION
value="http://www.ephox.com" SELECTED>
Ephox
<OPTION

value="http://www.ephox.com/product/editliveforxml/default.asp">
EditLive! for XML
<OPTION value="mailto:someonel@yourserver.com">Email Link

233

JavaScript Runtime API

</SELECT>
</P>
<P>Click here to insert hyperlink at the cursor in EditLive! for XML</P>
<p>
<INPUT type="button" name="buttonl" wvalue="Insert Hyperlink"
onClick="editlivel.InsertHyperlinkAtCursor (document.exampleForm.
hyperlinkToInsert.value) ;">

</P>
<!--Create an instance of EditLive! for XML-->
<SCRIPT language="JavaScript">

Ll==

var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlive") ;
editlivejs.setlLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample config.xml") ;
editlivejs.setBody (escape ("<p>Contents of EditLive! for XML</p>")):;
editlivejs.show();
-——>
</SCRIPT>
</FORM>
</BODY>
</HTML>

The following example demonstrates how to use the InsertHyperlinkAtCursor
with multiple arguments used to specify the attributes of the hyperlink (<a> tag) to be
inserted into EditLive! for XML. This example demonstrates how the target
(frame1) and name (hyperlink1) attributes can be specified for the hyperlink
http://www.ephox.com. Note the use of double and single quotation marks in this
example.

editlivejs.InsertHyperlinkAtCursor ("http://www.ephox.com",
"target='framel'", "name='hyperlinkl'");

Remarks

Note that this function can be used with differing numbers of arguments. However,
the first argument of the function must always be the URL for the hyperlink and is not
optional.

Arguments which represent XHTML attribute-value pairs must be valid XHTML. This
includes usage of the correct quotations marks.

234

JavaScript Runtime API

IsValid Function

Description

This function checks the validity of the content contained in the EditLive! for XML
applet.

Syntax

JavaSerint

IsValid(strJSFunct) ;

Parameters

strJSFunct This is a required parameter.

The name of the JavaScript callback function which receives the
boolean result of the IsValid call.

Example

Example 16.7. IsValid Runtime Function Example

The following example demonstrates how to use the IsValid method in association
with an instance of EditLive! for XML. In the example a button that calls the IsValid
function is used to check the validity of the document in EditLive! for XML. The result
of this check is presented to the user in a text field.

<script language="JavaScript">
function receivelIsValid(isValidBln) {
document.exampleForm.isValidResult.value = isValidBln;
}
</script>

<form name="exampleForm">
<p>EditLive! for XML validity check result will appear here:</p>
<!--Create a text field to send the result of the IsValid call to-->

235

JavaScript Runtime API

<p><input type="text" name="isValidResult" width="40"></p>

<p>Click this button check the validity of the current content</p>
<p><input type="button" name="buttonl" value="Check Validity"
onClick="editlivejs.IsValid('receivelIsValid');"/></p>

<!--Create an instance of EditLive! for XML-->
<script language="JavaScript">

var editlivejs;

editlivejs = new EditLiveXML ("editlive", 700 , 600);

editlivejs.show();
</script>
</form>

PostDocument Function

Description

This function allows developers to cause EditLive! for XML to use HTTP POST to
submit its content directly to a POST acceptor script. EditLive! for XML will also
process the HTTP response. The response is processed in accordance with a parameter
passed to the JavaScript method.

Syntax

JavaSerint

PostDocument (strFieldName, strPostURL, strResponseProcessing,
[strJSFunctionName]) ;

Parameters
strFieldName This parameter is required.
The name of the field in the HTTP POST that EditLive!
for XML uses to POST its content.
strPostURL This parameter is required.

236

JavaScript Runtime API

strResponseProcessing

strJSFunctionName

Example

The URL for the POST acceptor script that EditLive! for
XML POSTs to.

This parameter is required.

This parameter indicates how EditLive! for XML
should process the response. It has the following
possible values:

e saveToDisk

e callback

i | Note

When setting this parameter to callback
the strJgsFunctionName must also be
specified.

This parameter is optional.

The name of the JavaScript function to be used as a
callback function. The JavaScript function specified
should accept the content of the HTTP response as its
only parameter.

This parameter should be set in conjunction with
setting the st rResponseProcessing parameter to
callback.

Example 16.8. POSTDocument Runtime Function Example

The following code creates a button called save on a HTML page. When the button is
clicked it causes the instance of EditLive! for XML to POST its content to
http://someserver/post/postacceptor.jsp in the field named editliveField.
Upon receiving the HTTP response EditLive! for XML presents the user with a dialog
allowing them to save the content of the response to disk. This is performed by setting
the strResponseProcessing parameter to saveToDisk

237

JavaScript Runtime API

<HTML>
<HEAD>
<TITLE>EditLive! for XML JavaScript Example</TITLE>
<!--Include the EditLive! for XML JavaScript Library-->
<SCRIPT src="editlivexml/editlivexml.js" language="JavaScript">
</SCRIPT>
</HEAD>
<BODY>
<FORM name = exampleForm>
<P>Click this button to POST the document in EditLive!</P>
<P>
<INPUT type="button" name="buttonl" value="Save"
onClick="editlivejs.PostDocument ('editliveField',

'http://someserver/post/postacceptor.jsp', 'saveToDisk');">
</P>
<!--Create an instance of EditLive! for XML-->
<SCRIPT language="JavaScript">
L[==

var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ("<P>This is EditLive!</P>"));
editlivejs.show();
-—>
</SCRIPT>
</FORM>
</BODY>
</HTML>

SetDocument Function

Description

This function sets the contents of the EditLive! for XML applet. It will replace any
existing contents of the applet with the contents the function is provided with as its
parameter. This function takes a JavaScript string as its only parameter.

Syntax

JavaScript

238

JavaScript Runtime API

SetDocument (strDocument) ;

Parameters

strDocument A string of the contents to be placed into the EditLive! for XML
applet.

iJ Note

This string must be URL encoded. It is recommended that
this encoding is done via a server-side URL encoding
method. It can be achieved using the JavaScript escape
function, however, this is not recommended as the
escape function does.

Example

Example 16.9. SetDocument Runtime Function Example

The following code creates a <TEXTAREA>, named documentContents, that will have
its contents loaded into an instance of EditLive! for XML via the SetDocument
function. The SetDocument function will be associated with a HTML button. The
name of the EditLive! for XML applet is editlivejs.

<HTML>
<HEAD>
<TITLE>EditLive! for XML JavaScript Example</TITLE>
<!--Include the EditLive! for XML JavaScript Library-->
<SCRIPT src="editlivexml/editlivexml.js" language="JavaScript"></SCRIPT>
</HEAD>

<BODY>
<FORM name = exampleForm>
<P>EditLive! for XML contents will be loaded from here</P>
<!--Create a textarea to load the applet contents from-->
<P>

<TEXTAREA name="documentContents" cols="40" rows="10">
<html><body><p>Content to be
loaded</p></body></html>

239

JavaScript Runtime API

</TEXTAREA>
<P>Click this button to set applet contents</P>
<INPUT
type="button" name="buttonl" value="Set Contents"
onClick="editlivejs.SetDocument (escape (

document.exampleForm.documentContents.value)) ;">
</P>
<!--Create an instance of EditLive! for XML-->
<SCRIPT language="JavaScript">
L[==

var editlivejs;
editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample config.xml");
editlivejs.show();
-—>
</SCRIPT>
</FORM>
</BODY>
</HTML>

SetProperties Function

Description

This function is for use in conjunction with the custom properties dialog. This
function, when given a string of relevant name-value pairs, sets the attributes for an
instance of a specific tag within EditLive! for XML. For more information on how to
use custom properties dialogs with EditLive! for XML please see Custom Properties
Dialogs for EditLive! for XML.

Syntax

JavaSerint

SetProperties (strProperties) ;

Parameters

240

JavaScript Runtime API

strProperties This string provides a list of name-value pairings of attributes for
the relevant HTML tag. Each name and value for each pairing
must be delimited by a nequals (=) character. Name-value
pairings must be delimited by a new line (\n) character.
» Note
.
This string must be URL encoded. It is recommended
that this encoding is done via a server-side URL
encoding method. Encoding can be achieved using the
JavaScript escape function, however, this is not
recommended as the escape function does not fully
comply with the URL encoding standards.

Example

Example 16.10. SetProperties Runtime Function Example

The following sets the properties for an instance of a tag inside an instance of
EditLive! for XML named editlivejs.

//set up an instance of EditLive!

var editlivejs;

editlivejs = new EditLiveXML ("editlive",700,400);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample config.xml") ;
editlivejs.show();

//create a function which sets properties
function setNewProperties (newProperties) {
editlivejs.SetProperties (newProperties);

Remarks

Each name and value for each pairing must be delimited by an equals (=) character.

Name-value pairings must be delimited by a new line (\n) character.

241

JavaScript Runtime API

In order to correctly set the properties of the relevant tag it should be ensured that the
ephoxTagID attribute is not altered by the functions external to EditLive! for XML.
Also, the tag attribute must be present and the value of this attribute must correspond
to the name of the tag (i.e. span for a tag).

The value of the attribute with the name of tag designates the type of tag for which the
properties are relevant. Changing the value of the tag attribute will change the tag type
in EditLive! for XML. Thus, if the value of a tag attribute with the value td was
changed to th then the relevant table cell would be changed from a normal (td) cell to
a table header (th) cell.

The tag for which the custom properties dialog applies may contain standalone
attributes. These are attributes which have only a name and do not exist as a
name-value pairing. For example, the NowraP attribute of the <td> tag. In order to add
such an attribute to the properties string a name-value pair in which the name and
value are the same (e.g. NOowrRAP=NOWRAP) should be added to the properties string.

See Also

+ Custom Properties Dialogs for EditLive! for XML

SetXMLNodeValue Function

Description
This function is for use in conjunction with an ephox:button element embedded in a
form for EditLive! for XML that uses the getCurrentNodevalue action. This function

will allow the developer to set the value of an XML node given the 1D of that node as
supplied by the ephox:button using the getCurrentNodevalue action.

Syntax

JavaSerint

SetProperties (intID, strValue);

Parameters

242

JavaScript Runtime API

intID An integer specifying the ID of the relevant XML node.

strValue A string containing the value to set for the XML node.

. Note

A

This string must be URL encoded. It is recommended that this
encoding is done via a server-side URL encoding method.
Encoding can be achieved using the JavaScript escape
function, however, this is not recommended as the escape
function does not fully comply with the URL encoding

standards.

Example

Example 16.11. SetProperties Runtime Function Example

The following sets the properties for an instance of a tag inside an instance of
EditLive! for XML named editlivejs.

//set up an instance of EditLive!

var editlivejs;

editlivejs = new EditLiveXML ("editlive",700,400);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample config.xml") ;

editlivejs.show();
//create a function which sets properties

function setNewNodeValue (nodelID,newValue) {
editlivejs.SetXMLNodeValue (nodeID, newValue) ;

Remarks

In order to correctly set the properties of the relevant node it should be ensured that
the id value supplied by the getCurrentNodevalue action is not altered by the
functions external to EditLive! for XML.

243

JavaScript Runtime API

UploadImages Function

Description

This function uploads any local images, within the instance of EditLive! for XML, to
the Web server. Upon calling this function the URLs for local images within the applet
will be changed to point to the copies on the Web server instead of the local copies.

Syntax

JavaSerint

UploadImages () ;

Parameters

This function takes no parameters.

Example

Example 16.12. UploadImages Runtime Function Example

The following code allows the user to force an upload of the images in EditLive! for
XML to the Web server. The UploadImages function is called by clicking on a button
within the form.

<HTML>
<HEAD>
<TITLE>EditLive! for XML JavaScript Example</TITLE>
<!--Include the EditLive! for XML JavaScript Library-->
<SCRIPT src="editlivexml/editlivexml.js" language="JavaScript"></SCRIPT>

</HEAD>
<BODY>
<FORM name = exampleForm>
<pP>
<INPUT type="button" name="buttonl" value="Upload Images"
onClick="editlivejs.UploadImages();" >
</P>
<!--Create an instance of EditLive! for XML-->

<SCRIPT language="JavaScript">
L[==

var editlivejs;

244

JavaScript Runtime API

editlivejs = new EditLiveXML ("editlive",450 , 275);
editlivejs.setDownloadDirectory ("editlivexml") ;
editlivejs.setlLocalDeployment (false) ;
editlivejs.setConfigurationFile ("sample elconfig.xml") ;
editlivejs.setDocument (escape ("<p>Some initial text</p>"));
editlivejs.show();
-—>
</SCRIPT>
</FORM>
</BODY>
</HTML>

Remarks

The UploadImages function need not be called if using the EditLive! for XML
onSubmit functionality.

The upload script used by this function is that specified in the EditLive! for XML
configuration information in the <httpUploadData> element.

See Also

« <httpUploadData> XML element

* GetDocument JavaScript Function

245

Chapter 17. XML Configuration API

This chapter provides a reference for the EditLive! for XML XML Configuration API.
The chapter lists all the XML elements which can be used within the EditLive! for
XML in the order that they can appear in the configuration file.

<editLive> Configuration Element

This is the root element to be used in every EditLive! for XML configuration file.

Configuration Element Tree Structure

¢ <editLive>

<editLive>
<!-- configuration settings -->
</editLive>

Child Elements

<document> The document structure handles the configuration of
information placed inside the <#EAD> and <BoDY> tags. This
also includes <META> information and style sheet links.

. Note

.y

The configuration information placed within this
element applies to the generated document layout
or view only.

<ephoxLicenses> The ephoxLicenses element handles the configuration of
licensing information. Licensing information is used to ensure
that you are using EditLive! for XML correctly. Ephox will
provide you with the appropriate license files, these simply
have to be added here.

<spellCheck> The spellCheck element allows for the specification of the spell

246

XML Configuration API

checker JAR file. This enables customization of the spell
checker.

<htmlFilter> The htmlFilter element allows various filtering options to be
set. The HTML will be "cleaned" according to the filtering
attributes contained within this element.

<sourceEditor> The sourceEditor element allows you to set options relating to
the Code View of EditLive! for XML.

<wysiwygEditor> This element allows you to set options relating to the EditLive!
for XML editing pane.
<wordImport> The wordImport attribute allows for the configuration of the

Microsoft Word import format and the way that Microsoft
Word style information is imported.

<mediaSettings> The mediaSettings structure allows for the configuration of
image settings. It provides a mechanism for the developer to
provide a list of server images to be made available to end
users in addition to configuring how EditLive! behaves with
respect to images, both on the server and local machines.

<authentication> The authentication structure allows for the configuration of
authentication information for use with EditLive! for XML.
The username and password settings present within this
element will be used when retrieving data from the specified
realms.

<hyperlinks> The hyperlinks structure allows the provision of a list of
hyperlinks to the user. These settings affect the hyperlink
dialog within EditLive! for XML.

<menubar> The menuBar structure allows for the configuration of the
EditLive! for XML menus.

i | Note
This structure configures only the menu bar and
not the shortcut menu.
<toolbars> The toolbars structure allows for the configuration of the

EditLive! for XML format and command toolbars.

<shortcutMenu> The shortcutMenu element allows for the customization of the

247

XML Configuration API

EditLive! for XML shortcut menu.

Remarks

Each EditLive! for XML configuration file must contain exactly one <editLive>
element.

<document> Configuration Element

This element allows for the configuration of information which is contained between
the <HEAD> tags and as attributes within the <Bopy> tag of the view within Ephox
EditLive! for XML. This includes any META information and style sheet links.

. Note
e
When configuring the Visual Designer with these settings the information

contain within these settings becomes part of the views which are output by
the Visual Designer.

. Note

A

The settings which are configured through the <document> element will
only appear in the view within EditLive! for XML. In EditLive! for XML the
properties set within this element are not part of the output.

Configuration Element Tree Structure

e <editLive>

¢ <document>

<editLive>
<document>
<!--document configuration settings—-->
</document>

</editLive>

248

XML Configuration API

Child Elements

<html> This structure allows for the configuration of information which is
contained between the <HEAD> and as attributes within the <Bopy> tag of
the EditLive! for XML document. This includes any <META> information and
style sheet links.

Remarks

The structure of the child elements for the document element have been designed so
as to resemble the structure of a HTML document. The <htm1> element provides no
more configuration information than that of the document element. It is present in the
XML configuration document only to maintain the resemblance of the <document>
element structure to that of a HTML document.

The <document> element can appear only once within the <editLive> element.

<html> Configuration Element
This element allows for the configuration of information which is contained between

the HEAD tags and as attributes within the BODY tag of the Ephox EditLive! for XML
document. This includes any META information and style sheet links.

The settings which are configured through the <document> element will appear in the
actual document inside EditLive! for XML.

Configuration Element Tree Structure

e <editLive>

e <document>

e <html>
<editLive>
<document>
<html>
<!--html configuration settings-->
</html>

249

XML Configuration API

</document>

</editLive>

Child Elements

<head> This structure allows for the configuration of information which is to be
contained between the HEAD tags of the EditLive! for XML document.

Remarks

The extra level in the XML document tree provided by this element serves no practical
purpose beyond that of the document element. No attributes are set within the <htm1>
element itself. This element has been added to the tree as a conceptual aide only.
Through this element the concept of the HTML document can be better maintained
and visualized.

The <html> element can appear only once within the <document> element.

<head> Configuration Element

This element allows for the configuration of information which is to be contained
between the <HEAD> tags of the EditLive! for XML document.

The settings which are configured through the <head> element will appear in the
actual document inside EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <document>
e <html>

¢ <head>

250

XML Configuration API

<editLive>
<document>
<html>
<head>
<!--head configuration settings-->
</head>

</html>
</document>

</editLive>

Child Elements

<link> This element provides the style sheet information which is to be stored in a
<LINK> tag within the <HEAD> tag of the EditLive! for XML document.
i | Note

This element defaults to a style sheet information type (ie.
text/css information).

<style> This element provides the information which is to be stored between the
<STYLE> tags, between the <HEAD> tags of the Ephox EditLive! for XML
document. The element has no attributes.

Remarks

The <head> element can appear only once within the <htm1> element.

<base> Configuration Element

This element provides the information which is to be stored as attributes within the
BASE tag between the HEAD tags of the Ephox EditLive! for XML document. The
element has only a HREF attribute.

The value which appears within the <base> element will appear within the actual
EditLive! for XML document between the HEAD tags in a BASE tag.

Configuration Element Tree Structure

251

XML Configuration API

e <editLive>

¢ <document>

e <html>

¢ <head>

¢ <base>

<editLive>

<document>
<html>

<head>

<base ... />

</head>
</html>
</document>

</editLive>

Optional Attributes

href This specifies the URL of a document whose server path is to be used as the
base URL for all relative references in the document.

Example

The following example demonstrates how to specify the URL
http://www.yourserver.com/ as the value for the base URL.

<editLive>

252

XML Configuration API

<document>
<html>
<head>
<base href="http://www.yourserver.com/"/>
</head>
</html>
</document>

</editLive>

Remarks

If the <base> element is not specified then EditLive! for XML will use the base
location of the page which it resides in as the base URL. For example, if the instance of
EditLive! for XML appeared in the page
http://www.yourserver.com/editlive.html then the instance of EditLive! for
XML in that page will use http://www.yourserver.com as its base URL.

The <base> element can appear only once within the <head> element.

The <base> element must be a complete tag, it cannot contain a tag body. Therefore
the tag must be closed in the same line. See the example below:

<base href=... />

See Also

» BaseURL Property

<link> Configuration Element

This element provides the information which is to be stored as attributes within the
LINK tag between the <HEAD> tags of the Ephox EditLive! for XML document.

The value which appears within the <1ink> element will appear within the actual
EditLive! for XML document between the <HEAD> tags in a <L INK> tag.

Configuration Element Tree Structure

253

XML Configuration API

e <editLive>

¢ <document>

e <html>

¢ <head>

¢ <link>

<editLive>
<document>
<html>
<head>

<link ... />
</head>

</html>
</document>

</editLive>

Optional Attributes

href This attribute specifies the value for the href attribute of the <. 1Nk> tag to be
used between the <HEAD> tags within the actual EditLive! for XML document.
The href attribute specifies the destination for the link (eg. the URL of a

stylesheet).

type This attribute specifies the value for the type attribute of the <. 1NK> tag to be
used between the <HEAD> tags within the actual EditLive! for XML document.
The type attribute specifies the data type for the document or resource which

is linked to (eg. text/css).

Default Value: text/css

254

XML Configuration API

rel This attribute specifies the value for the rel attribute of the <. 1nk> tag to be
used between the <HEAD> tags within the actual EditLive! for XML document.
The rel attribute specifies relationship between the current document and the
link (eg. stylesheet).

Example

This example demonstrates how to use the <1ink> element in order to set the
attributes of the <L.INk> tag within an EditLive! for XML document.

<editLive>

<document>
<html>

<head>

<link href="styles.css" rel="stylesheet" type="text/css"/>

</head>
</html>
</document>

</editLive>

Remarks

The <1ink> element can appear multiple times within the <head> element. For
information on how multiple external style sheets will be interpreted please refer to
the EditLive! for XML and Style Sheets document.

The <1ink> element must be a complete tag, it cannot contain a tag body. Therefore
the tag must be closed in the same line. See the example below:

<link href=... />

See Also

« EditLive! for XML and Style Sheets

255

XML Configuration API

<style> Configuration Element

This element provides the information which is to be stored between the <sTYLE> tags,
between the <HEAD> tags of the Ephox EditLive! for XML document. The element has
no attributes.

Configuration Element Tree Structure

e <editLive>
¢ <document>
e <html>
e <head>

¢ <style>

<editLive>
<document>
<html>
<head>
<style>
<!--style configuration settings-->
</style>
</head>
</html>
</document>

</editLive>

Example

The following example demonstrates how to specify an embedded style sheet for use
with EditLive! for XML. The style sheet defined sets the font size to 14pt and the font
to arial for the <BoDY> of the document.

256

XML Configuration API

<editLive>
<document>
<html>
<head>
<style>
p {font-size:1l4pt}
body {font-family:Arial}
</style>

</head>
</html>
</document>

</editLive>

Remarks

Conflicts between externally linked style sheets and embedded style sheets in

EditLive! for XML are resolved according to the CSS precedence rules. Thus, any styles
defined in embedded style sheets take precedence over those defined in an external
style sheet. Thus, styles defined in the <style> element of the EditLive! for XML
configuration file have precedence over those defined in an external style sheet linked
to via the <1ink> element within the configuration file.

The <style> element can appear only once within the <head> element.

<ephoxLicenses> Configuration Element

This structure contains the various licenses for Ephox EditLive! for XML. If this
structure is left blank or if the licensing information contained within this element is
incorrect then EditLive! for XML will only run in the 30 day trial mode.

Configuration Element Tree Structure

e <editLive>

+ <ephoxLicenses>

<editLive>

257

XML Configuration API

<ephoxLicenses>

<!--ephoxLicenses configuration settings-->
</ephoxLicenses>

</editLive>

Child Elements

<license> This element contains configuration information for an individual
license for EditLive! for XML.

Example

This example demonstrates how to use an empty <ephoxLicenses> element to run
EditLive! for XML in the 30 day trial mode only.

<editLive>
<ephoxLicenses/>

</editLive>

Remarks

The <ephoxLicenses> element can appear only once within the <editLive>
element.

If the <ephoxLicenses> element is to be left blank the element must then be a

complete tag, it cannot contain a tag body. Therefore the tag must be closed in the
same line. It should appear as below:

<ephoxLicenses/>

If left blank then EditLive! for XML will only run in the 30 day trial mode.

<license> Configuration Element

258

XML Configuration API

This element contains the configuration information for a single license of Ephox
EditLive! for XML.

. Note

A

Attributes within this element should be entered as per the license file
provided by Ephox. If the configuration information provided by the

attributes does not correspond to a valid license provided by Ephox then
EditLive! for XML will only run in 30 day trial mode.

Configuration Element Tree Structure

¢ <editLive>
* <ephoxLicenses>

e <license>

<editLive>
<ephoxLicenses>
<license ... />

</ephoxLicenses>

</editLive>

Required Attributes

domain This attribute provides the domain to which this copy of EditLive! for
XML is licensed.

expiration This attribute provides the expiration date of the license.

key This attribute provides the product key for this license of EditLive! for
XML.

licensee This attribute provides the company or organisation to which this copy

of EditLive! for XML is licensed.

259

XML Configuration API

product This attribute details the Ephox product which can be used with this
license.
release This attribute details the release number of the Ephox product which

can be used with this license.

seats This attribute details the number of seats that this license is valid for.

Optional Attributes

accountID This attribute details your Ephox account ID.

activationURL This attribute configures the URL that EditLive! for XML should
use to check its license. If left blank the default value will be used.

Default Value: nttp://www.ephox.com/activate/eljf10.asp

forceActive When set to true this attribute will force licenses to become active
instead of requesting the user to activate the license. If left blank
the default value will be used.

Default Value: true

A

Note

This attribute is a boolean and can only be true or

false.

type This attribute specifies the type of license provided. Some license
types might be time limited. If left blank the default value will be
used.

Default Value: production

A

Note

This attribute has the possible values of production,
development O QA.

Example

This example demonstrates how to use the <license> element to input licensing

260

XML Configuration API

information into EditLive! for XML.

<editLive>

<ephoxLicenses>
<license accountID="1234"

activationURL="http://www.ephox.com/elregister/el2/activate.asp"
domain="demo.com" expiration="NEVER" forceActive="false"
key="4545-5465-2456-5648" licensee="Someone"
product="EditLive! for XML" release="2.0" seats="100"
type="production" />

</ephoxLicenses>

</editLive>

Remarks

The <license> element can appear multiple times within the <ephoxLicenses>
element.

The <1icense> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<license accountID=... />

<spellCheck> Configuration Element

This element defines the location of the JAR file to be used with the spell checker. This
enables the dictionary to be defined for Ephox EditLive! for XML.

Configuration Element Tree Structure
e <editLive>

¢ <spellCheck>

<editLive>

<spellCheck ... />

261

XML Configuration API

</editLive>

Optional Attributes

jar The value for this attribute corresponds to the location of the JAR file to be used
with EditLive! for XML for spell checking.

» Note
1)
For the spell checking in EditLive! for XML to function a JAR file

must be specified. The name of the JAR file for the spell checker
dictionary must be in all lower case letters.

Example

The following example demonstrates how to define the location of the spell checker
JAR file to be used with EditLive! for XML.

<editLive>
<spellCheck
jar="../../redistributables/editlivexml/dictionaries/en us 3 1.jar"
/>
</editLive>
Remarks

A JAR file must be specified for the spell checker in order for the spell checking
functionality of EditLive! for XML to work.

The <spellCheck> element can appear only once within the <editLive> element.

If the <spellCheck> element is to be left blank the element must then be a complete
tag, it cannot contain a tag body. Therefore the tag must be closed in the same line. It
should appear as below:

<spellCheck jar=... />

262

XML Configuration API

<htmlFilter> Configuration Element

This element provides the HTML filter settings for use within Ephox EditLive! for
XML.

Configuration Element Tree Structure

e <editLive>

e <htmlFilter>

<editLive>
<htmlFilter ... />

</editLive>

Required Attributes

wrapLength Specifies the number of characters for each line within the HTML
source.

A

Note

Setting the wrapLength to zero (0) turns wrapping off
within the HTML source.

Optional Attributes

indentContent This option specifies that EditLive! for XML will indent the
content of appropriate tags, thus creating well formatted
HTML source code. If left blank the default value will be used.

Default Value: true

A

Note

263

XML Configuration API

logicalEmphasis

removeFontTags

quoteMarks

encloseText

This attribute is a boolean and can only be t rue or

false.

If set to t rue tags will be replaced by <sTrRONG> tags and
<1> tags will be replaced by tags. If left blank the default
value will be used.

Default Value: true

. Note
.y
This attribute is a boolean and can only be t rue or

false.

If set to t rue EditLive! for XML will discard all font tags. If
left blank the default value will be used.

Default Value: true

. Note
A

This attribute is a boolean and can only be t rue or

false.

If set to t rue quotation marks (") will be escaped and
therefore appear as squot;. If left blank the default value will
be used.

Default Value: true

. Note
A
This attribute is a boolean and can only be true or

false.

If set to t rue content will be automatically be wrapped with
paragraph (<p>) tags if it has not been properly enclosed with
block tags. This is done to ensure that the content inside
XHTML sections is valid.

Default Value: true

264

XML Configuration API

» Note
.y
This attribute is a boolean and can only be t rue or

false.

» Note

A

Ephox does not recommend setting this attribute
to false as it may cause invalid HTML to be
generated.

allowUnknownTags If set to true tags not recognised in HTML or XHTML will be
interpreted as custom tags inside XHTML sections. This will
preserve the unknown tags. When set to false unknown tags
will be HTML encoded i.g. "<unknownTag>" would be
converted to "1t ; UnknownTagsagt ;"

Default Value: true

. Note
A

This attribute is a boolean and can only be t rue or

false.

. Note

.y

When producing XHTML output allowing
unknown tags to be preserved in the content may
cause errors in validating the resulting XHTML. If
the XHTML produced by EditLive! for XML is to
be run through a validation process then it is
recommended that this attribute be set to false.

Example

The following example demonstrates how to set the various attributes of the
<htmlFilter> element.

<editLive>

<htmlFilter wrapLength="68" indentContent="true" logicalEmphasis="true" />

265

XML Configuration API

</editLive>

Remarks

To ensure EditLive! for XML provides valid XHTML content where required ensure
that allowUnknownTags is set to false and outputXHTML is set to true.

The <htmlFilter> element can appear only once within the <editLive> element.

If the <htmlFilter> element is to be left blank the element must then be a complete
tag, it cannot contain a tag body. Therefore the tag must be closed in the same line. It
should appear as below:

<htmlFilter wrapLength=... />

<wysiwygEditor> Configuration Element

This element allows you to set options relating to the EditLive! for XML editing pane.

Configuration Element Tree Structure

e <editLive>

¢ <wysiwygEditor>

<editLive>
<wysiwygEditor>
<!--wysiwygEditor settings—-->

<wysiwygEditor/>

</editLive>

Optional Attributes

266

XML Configuration API

tabPlacement This attribute defines where the Design and Code view tabs are
placed on the editor pane.

Default Value: top

Possible Values:

» top - Places the tabs at the top of the editor pane.
¢ Dbottom - Places the tabs at the bottom of the editor pane.

« off - Removes the tabs from the editor.

Child Elements

<xmlEditor> This structure allows for the configuration of the user interface
components of EditLive! for XML.

Example

The following example would display the Design and Code tabs on the bottom of the
editor pane.

<editLive>
<wysiwygEditor tabPlacement="bottom" />

</editLive>

Remarks

The <wysiwygEditor> element can appear only once within the <editLive> element.

If the <wysiwygEditor> element is to be left blank the element must then be a
complete tag, it cannot contain a tag body. Therefore the tag must be closed in the
same line. It should appear as below:

<wysiwygEditor tabPlacement=.../>

267

XML Configuration API

<xmlEditor> Configuration Element

This element allows the configuration of the user interface for the EditLive! for XML
editor.

Configuration Element Tree Structure

¢ <editLive>
¢ <wysiwygEditor>

e <xmlEditor>

<editLive>
<wysiwygEditor>
<xmlEditor ... />

</wysiwygEditor>

</editLive>

Optional Attributes

showDocumentNavigator Configures whether the XML document navigation bar
is displayed immediately below the EditLive! for XML
toolbars. If set to true then the document navigation
bar will be displayed.

Default value: true

showValidationPane Configures whether the XML validation pane is
displayed. The validation pane provides users with
validation information during runtime. There are three
possible values for this attribute:

+ auto - When set to auto the validation pane will be
displayed to users only when there is a validation
€error.

268

XML Configuration API

» true - When set to true the validation pane will be
displayed to users all the time.

+ false - When set to false the validation pane will
never be displayed to users.

Example

The following example would hide the validation pane from users at all times, it would
also cause the document navigator to be hidden.

<editLive>

<wysiwygEditor tabPlacement="bottom">
<xmlEditor
showValidationPane="false"
showDocumentNavigator="false"
/>
</wysiwygEditor>

</editLive>

Remarks

The <xm1Editor> element can appear only once within the <wysiwygEditor>
element.

If the <xm1Editor> element is to be left blank the element must then be a complete
tag, it cannot contain a tag body. Therefore the tag must be closed in the same line. It
should appear as below:

<xmlEditor showValidationPane=.../>

<sourceEditor> Configuration Element

This element provides the code view settings for use within Ephox EditLive! for XML.

. Note

ay

269

XML Configuration API

This element does not apply for the configuration of the Visual Designer.

Configuration Element Tree Structure

e <editLive>

¢ <sourceEditor>

<editLive>
<sourceEditor ... />

</editLive>

Optional Attributes

enabled If set to true users will be able to access the Code view for documents.

Example

The following example would allow users to view the source code of a document within
EditLive! for XML.

<editLive>
<sourceEditor enabled="true" />

</editLive>

Remarks

The <sourceEditor> element can appear only once within the <editLive> element.

If the <sourceEditor> element is to be left blank the element must then be a
complete tag, it cannot contain a tag body. Therefore the tag must be closed in the
same line. It should appear as below:

270

XML Configuration API

<sourceEditor showBodyOnly="false"/>

<wordImport> Configuration Element

This element configures the manner in which Ephox EditLive! for XML reacts when
text is imported from Microsoft Word.

Configuration Element Tree Structure

e <editLive>

¢ <wordImport>

<editLive>
<wordImport ... />

</editLive>

Optional Attributes

styleOption This attribute specifies the user prompting and behaviour of
EditLive! for XML upon detecting an import from Microsoft Word.
This attribute has three possible values; user prompt, merge or

clean.

e Theuser prompt setting will result in EditLive! for XML
prompting the user as to whether they wish to import Microsoft
Word styles or strip them from the imported text.

+ The merge setting will result in the Microsoft Word styles being
merged with the current style information within EditLive! for
XML.

+ The clean setting will result in EditLive! for XML stripping the
Microsoft Word Styles from the imported text.

271

XML Configuration API

» Note
Styles imported from Microsoft Word will not overwrite
styles which already exist within the document.

| iJ Note

For EditLive! for XML this should always be set to clean.

Example

The following example demonstrates how to set EditLive! for XML to prompt the user
with style import options every time a Microsoft Word import is detected.

<editLive>
<wordImport styleOption="user prompt" />

</editLive>

Remarks

The <wordImport> element can appear only once within the <editLive> element.

If the <wordImport> element is to be left blank the element must then be a complete
tag, it cannot contain a tag body. Therefore the tag must be closed in the same line. It
should appear as below:

<wordImport styleOption=.../>

<mediaSettings> Configuration Element

This element allows for the configuration of media settings, such as image settings,
within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>

272

XML Configuration API

¢ <mediaSettings>

<editLive>
<mediaSettings>

<!--mediaSettings configuration settings—-->
</mediaSettings>

</editLive>

Child Elements

<images> This element allows for the configuration of information for images and
any other media within EditLive! for XML.

Remarks

The <mediaSettings> element can appear only once within the <editLive> element.

<images> Configuration Element

This element allows for the configuration of information for images and any other
media within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <mediaSettings>

* <images>

<editLive>

<mediaSettings>
<images>

273

XML Configuration API

<!--images configuration settings-->

</images>
</mediaSettings>

</editLive>

Required Attributes

allowLocallmages

allowUserSpecified

Child Elements

<httpImageUpload>
<imageList>

<webdav>

This attribute defines whether users have the option to
browse their local directories for images in the image dialog
box. This attribute may be set to t rue or false. If set to
false users cannot browse local images.

» Note

.y

To turn off local image browsing the Insert
Local Image... menu item must also be absent
from the configuration.

This attribute defines whether users have the option to
specify URLs for images in the image dialog box. This
attribute may be set to true or false. If set to false users
cannot specify image their own URLs.

. Note

A

If a user specifies the URL for a local file then
EditLive! for XML will attempt to upload this
file.

This element provides the configuration information to be
used for HTTP image upload within EditLive! for XML.

This element provides a list of images stored on a Web server
which can be accessed by the end users of EditLive! for XML.

This element allows for the customization of the EditLive! for

274

XML Configuration API

XML WebDAYV functionality.

Remarks

The <images> element can appear only once within the <mediasettings> element.

<httpImageUpload> Configuration Element

This element allows for the configuration of information which is used when using
HTTP image upload within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
* <mediaSettings>
e <images>

¢ <httpImageUpload>

<editLive>
<mediaSettings>
<images>

<httpImageUpload ... />

</images>
</mediaSettings>

</editLive>

Required Attributes

base This attribute defines the location where images can be found after they have

275

XML Configuration API

been uploaded. For more information please see the article on HTTP image
upload.

href This attribute defines the location on the Web server of the script which

handles image uploads. For more information please see the article on HTTP
image upload.

Child Elements

<httpUploadData> This element is used to provide extra information when
performing a HTTP upload. This can be used so that extra
information is provided to your HTTP upload handler script.
Information is provided in name and value pairings.

Example

The following example demonstrates how to define the base and href attributes for
EditLive! for XML.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://yourserver.com/imagedir/"
href="http://yourserver.com/scripts/uploadhandler.asp"

/>

</images>
</mediaSettings>

</editLive>

Remarks

The <httpImageUpload> element can appear only once within the <images> element.

If there is no <httpUploadData> element(s) then <httpImageUpload> must be a
complete tag, it cannot contain a tag body. Therefore the tag must be closed in the
same line. It should appear as below:

276

XML Configuration API

<httpImageUpload base=... />

If there are <httpUploadData> elements present then the <httpImageUpload>
element needs to have both opening and closing tags. It should appear as below:

<httpImageUpload base=... >

<httpUploadData name=... />
<httpUploadData name=... />
</httpImageUpload>
See Also

» Using HTTP for Image Upload in EditLive! for XML

<httpUploadData> Configuration Element

This element allows for the configuration of information which is used when using
HTTP image upload within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <mediaSettings>
¢ <images>
e <httpImageUpload>

¢ <httpUploadData>

277

XML Configuration API

<editLive>

<mediaSettings>
<images>
<httpImageUpload ... >
<httpUploadData ... />
</httpImageUpload>

</images>
</mediaSettings>

</editLive>

Required Attributes

name This attribute should contain the name for the extra data property being
transmitted with the HTTP upload.

data This attribute should contain the extra data that you wish to transmit with the
HTTP upload.

Example

The following example demonstrates how to set various <httpUploadData>
attributes.

<editLive>

<mediaSettings>
<images>
<httpImageUpload
base="http://yourserver.com/imagedir/"
href="http://yourserver.com/scripts/uploadhandler.asp"

>
<httpUploadData name="user" data="default"/>
<httpUploadData name="priority" data="1"/>
</httpImageUpload>
<images>
<mediaSettings>
</editLive>

278

XML Configuration API

Remarks

The <httpUploadData> element can appear multiple times within the
<httpImageUpload> element.

The <httpUploadData> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<httpUploadData name=... />

<imageList> Configuration Element

This element contains a list of all the server images to be configured for use with
EditLive! for XML.

Configuration Element Tree Structure

¢ <editLive>
e <mediaSettings>
¢ <images>

¢ <imagelist>

<editLive>
<mediaSettings>
<images>
<imageList>
<!--image list configuration settings-->
</imageList>
</images>
</mediaSettings>
</editLive>

279

XML Configuration API

Child Elements

<image> This element contains the configuration information for a server image for
use with EditLive! for XML.

Remarks

The <imageList> element can appear only once within the <images> element.

<image> Configuration Element

This element defines the properties of an image stored on a server which is to be used
with Ephox EditLive! for XML.

Configuration Element Tree Structure

¢ <editLive>
e <mediaSettings>
¢ <images>
¢ <imagelist>

¢ <image>

<editLive>

<mediaSettings>
<images>

<imageList>
<image ... />
</imageList>
</images>
</mediaSettings>

N
0]
o]

XML Configuration API

</editLive>

Required Attributes

src This attribute defines where the image can be found.

The URL can be absolute or relative.

If a relative URL is specified it will be relative to the base attribute defined
in the <httpImageUpload> element.

If no base attribute has been defined and the URL is relative then the URL
will be relative to the base of the page in which the instance of EditLive! for
XML resides.

Optional Attributes

align

alt

border

This attribute has the same effect as the align property of the <tmMG>
HTML tag. It affects the alignment of text which is placed after the
image reference.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute has the same effect as the alt property of the <1mMG>
HTML tag. This attribute defines the alternative text to be displayed
when the image cannot be loaded into a HTML page.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute has the same effect as the border property of the <1MG>
HTML tag. This attribute specifies the width of the border, in pixels,
around the image.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

281

XML Configuration API

description

height

hspace

name

title

vspace

width

Example

This attribute specifies the description used for the image in the
Server Image Dialog within EditLive! for XML.

This attribute has the same effect as the height property of the
<1MG> HTML tag. This attribute specifies the height of the image in
pixels.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute has the same effect as the hspace property of the
<1MG> HTML tag. This attribute specifies the horizontal spacing
around the image in pixels (ie. left and right side padding).

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute has the same effect as the title property of the <1mMG>
HTML tag. This attribute defines the name for the image.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute specifies the title used for the image in the Server
Image Dialog within EditLive! for XML.

This attribute has the same effect as the vspace property of the
<1MG> HTML tag. This attribute specifies the vertical spacing around
the image in pixels (ie. top and bottom padding).

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

This attribute has the same effect as the width property of the <1mG>
HTML tag. This attribute specifies the width of the image in pixels.

When inserting the image defined by this <image> element into an
EditLive! for XML document this attribute will appear in the source
code.

282

XML Configuration API

The following example demonstrates how to configure a server image for use with
EditLive! for XML.

<editLive>
<mediaSettings>
<images>
<imageList>
<image align="left"
alt="Alternative Text"
border="1"
description="A Server Image"
height="500" width="250"
src="http://yourserver.com/"
/>
</imageList>
</images>
</mediaSettings>
</editLive>
Remarks

The <image> element can appear multiple times within the <imageList> element.

The <image> element must be a complete tag, it cannot contain a tag body. Therefore

the tag must be closed in the same line. See the example below:

<image src=... />

<webdav> Configuration Element

This element contains the configuration information for the use of Ephox EditLive! for

XML with WebDAV repositories.

Configuration Element Tree Structure

e <editLive>

283

XML Configuration API

¢ <mediaSettings>

¢ <images>

¢ <webdav>

OR

e <editLive>

¢ <hyperlinks>

¢ <webdav>

<editLive>

<mediaSettings>
<images>
<webdav
<!--webdav configuration settings—-->
</webdav>

</images>
</mediaSettings>

</editLive>
OR
<editLive>
<hyperlinks>
<webdav>
<!--webdav configuration settings-->
</webdav>

284

XML Configuration API

</hyperlinks>

</editLive>

Child Elements

<repository> This element defines the location of a WebDAYV repository.

Remarks

The <webdav> element can appear only once within the <images> element.
The <webdav> element can appear only once within the <hyperlinks> element.

To use the WebDAV functionality of EditLive! for XML the WebDAYV property for
EditLive! for XML in your API must be set. For more information please consult the
reference of your EditLive! for XML API.

<repository> Configuration Element

This element defines the configuration settings for the use of Ephox EditLive! for XML
with a WebDAV repository.

Configuration Element Tree Structure

e <editLive>
¢ <mediaSettings>
¢ <images>
¢ <webdav>

¢ <repository>

285

XML Configuration API

OR

e <editLive>

¢ <hyperlinks>

e <webdav>

¢ <repository>

<editLive>
<mediaSettings>
<images>
<webdav
<repository ... />
</webdav>
</images>
</mediaSettings>
</editLive>
OR
<editLive>
<hyperlinks>
<webdav>
<repository ... />
</webdav>
</hyperlinks>
</editLive>

Required Attributes

286

XML Configuration API

baseDir The root directory for the WebDAYV repository. Users will not be
permitted to browse to any directories of a higher level than that
of the value of the baseDir attribute.

webDAVBaseURL The location of the WebDAYV repository relative to the document
root of the instance of EditLive! for XML concerned.
. Note
A
This may either be a relative or absolute URL defining
the location of the WebDAV repository. If this is a
relative URL then it defines the location of the

WebDAV repository relative to the document root
directory of the instance of EditLive! for XML

concerned.
Optional Attributes
name The human-readable name for this WebDAV repository.
defaultDir The initial directory that EditLive! for XML is to access on the
WebDAV server.

useMimeType Whether or not to filter files according to their mime type. If this is
false, the files are filtered according to their file extension.

Default: The default value for this attribute is true.

A

Note

This attribute has two possible values; true or false.

Example

The following example demonstrates how to define a WebDAYV repository with the
root URL http://www.yourserver.com/webDAV for use with an instance of EditLive!
for XML which has the root directory http://www.yourserver.com/editlive. It
uses a relative URL to define the location of the WebDAV repository.

<editLive>

287

XML Configuration API

<mediaSettings>
<images>
<webdav>
<repository name="Sample"
baseDir="http://www.yourserver.com/webDAV"
defaultDir="SampleDir"
webDAVBaseURL="". ./webDAV"
/>
</webdav>
</images>
</mediaSettings>

</editLive>

The following example demonstrates how to define a WebDAYV repository with the
root URL http://www.yourserver.com/webDAV for use with an instance of EditLive!
for XML running on a server different to that of the WebDAV repository. Thus, an
absolute URL must be used.

<editLive>
<mediaSettings>
<images>
<webdav>
<repository name="Sample"
baseDir="http://www.yourserver.com/webDAV"
defaultDir="SampleDir"
webDAVBaseURL="http://www.yourserver.com/webDAV"
/>
</webdav>
</images>
</mediaSettings>
</editLive>
Remarks

For WebDAV repositories requiring user authentication the <realm> element should
be used to specify the user name and password for the repository.

The <repository> element can appear multiple times within the <webdav> element.

The <repository> element must be a complete tag, it cannot contain a tag body.

288

XML Configuration API

Therefore the tag must be closed in the same line. See the example below:

<repository name=... />

The first repository listed in the EditLive! for XML configuration file is the default
WebDAV repository.

See Also

« <realm> Element

<authentication> Configuration Element

This element contains the settings required for a user of EditLive! for XML to
authenticate themselves to a specific Web server realm. The element should contain

the settings for each realm that the instance of EditLive! for XML concerned may
access.

Configuration Element Tree Structure

e <editLive>

¢ <authentication>

<editLive>
<authentication>

<!--authentication configuration settings-->
</authentication>

</editLive>

Child Configuration Elements

<realm> This configuration element contains the authentication settings for a
specific realm.

289

XML Configuration API

Remarks

The <authentication> element can appear only once within the <editLive>
element.

<realm> Configuration Element

This element contains the settings required for a user to authenticate themselves to a
realm on a Web server. EditLive! for XML supports the following forms of Web server

authentication:
« Basic

« Digest

« NTLM

Configuration Element Tree Structure

e <editLive>
¢ <authentication>

e <realm>

<editLive>
<authentication>
<realm ... />

</authentication>

</editLive>

Required Attributes

290

XML Configuration API

realm The realm for which this authentication information applies. For basic and
digest authentication the realm is specified in the Web server configuration,
in NTLM authentication the realm is equivalent to the host name.

iJ Note

For NTLM authentication the realm attribute should contain the
value of the host to be accessed. For example, if the URL for the
protected area was http://www.yourserver.com/webDAV and
this required NTLM authentication then the realm attribute
\Noukibewww.yourserver.com(Le
realm="www.yourserver.com").

Optional Attributes

domain The domain on which the specified realm can be accessed.

i | Note
This attribute is not needed when using either the basic or
digest authentication types.

password The password to be used when accessing the realm.

username The username to be used when accessing the realm.

Examples

This example demonstrates how to configure the <realm> element for use with a basic
or digest authentication method. In this example the realm being accessed is the
protected realm. The username to be used is EditLive and the corresponding
password is Ephox.

<editLive>

<authentication>
<realm realm="protected"
username="EditLive"
password="Ephox" />

</authentication>

291

XML Configuration API

</editLive>

This example demonstrates how to configure the <realm> element for use with a
NTLM authentication method. In this example the protected area being accessed is
designated by the URL http://yourserver.com/protected and thus resides on the
yourserver.com host which can be found on the intranet network domain. The
username to be used is EditLive and the corresponding password is Ephox.

<editLive>

<authentication>
<realm realm="yourserver.com"
domain="intranet"
username="EditLive"
password="Ephox"
/>

</authentication>

</editLive>

Remarks

The <realm> element can appear multiple times within the <authentication>
element.

The <realm> element must be a complete tag, it cannot contain a tag body. Therefore
the tag must be closed in the same line. See the example below:

<realm realm=... />

In the case of all the authentication details not being provided in the XML
configuration the end user will be prompted for the details required. The details
provided in the XML, if any, will be supplied to the end user when prompted. For
example, if only the username and domain are supplied by the XML configuration the
end user will be prompted and will only have to supply the correct password.

<hyperlinks> Configuration Element

This element allows for the configuration of a list of hyperlinks and e-mail addresses
to be made available to the end users of Ephox EditLive! for XML via the Insert

202

XML Configuration API

Hyperlink dialog.

Configuration Element Tree Structure

e <editLive>

¢ <hyperlinks>

<editLive>
<document>

<!--document configuration settings—-->

</document>

</editLive>

Child Elements

<hyperlinkList>

<mailtoList>

<webdav>

Remarks

This element allows for the specification of the list of hyperlinks
that the end users will be provided with.

This element allows for the specification of the list of e-mail
addresses that the end users will be provided with.

This element allows for the specification of WebDAV
repositories that end users can browse and select files to link to.

The <hyperlinks> element can appear only once within the <editLive> element.

<hyperlinkList> Configuration Element

This element allows for the specification of a list of hyperlinks that the users of Ephox
EditLive! for XML will be provided with via the Insert Hyperlink dialog.

Configuration Element Tree Structure

e <editLive>

293

XML Configuration API

¢ <hyperlinks>

e <hyperlinkList>

<editLive>

<hyperlinks>
<hyperlinkList>
<!--hyperlink list configuration settings-->
</hyperlinkList>
</hyperlinks>

</editLive>

Child Elements

<hyperlink> This element defines a hyperlink that users of EditLive! for XML will
be provided with via the Insert Hyperlink dialog.

Remarks

The <hyperlinkList> element can appear only once within the <hyperlinks>
element.

<hyperlink> Configuration Element

This element allows for the specification of a single hyperlink that the end users of
Ephox EditLive! for XML will be provided with via the Insert Hyperlink dialog.

Configuration Element Tree Structure

e <editLive>

e <hyperlinks>

294

XML Configuration API

¢ <hyperlinkList>

¢ <hyperlink>

<editLive>
<hyperlinks>
<hyperlinkList>
<hyperlink ... />
</hyperlinkList>

</hyperlinks>

</editLive>

Required Attributes

href This attribute defines the URL for the hyperlink.

Optional Attributes

description This attribute specifies the description used for the image in the
Insert Hyperlink dialog within EditLive! for XML.

target This attribute has the same effect as the target property of the <a>
HTML tag. This attribute specifies the name of the frame for the

hyperlink to jump to.

When inserting the hyperlink defined by this <hyper1link> element
into an EditLive! for XML document this attribute will appear in the

HTML source code.

title This attribute has the same effect as the title property of the <a>
HTML tag. This attribute provides an advisory title for the document

linked to.

295

XML Configuration API

When inserting the hyperlink defined by this <hyperlink> element
into an EditLive! for XML document this attribute will appear in the
HTML source code.

Example

The following example demonstrates how to specify a hyperlink to provide the users of
EditLive! for XML with.

<editLive>

<hyperlinks>
<hyperlinkList>
<hyperlink href="http://www.someserver.com/somepage.html"
description="This is a hyperlink"”
target=" blank"
title="Hyperlink" />
</hyperlinkList>

</hyperlinks>

</editLive>

Remarks

The <hyperlink> element can appear multiple times within the <hyperlinkList>
element.

The <hyperlink> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<hyperlink href=... />

<mailtoList> Configuration Element

This element allows for the specification of a list of e-mail addresses that the end users
of Ephox EditLive! for XML will be provided with via the Insert Hyperlink dialog.

Configuration Element Tree Structure

2906

XML Configuration API

e <editLive>

¢ <hyperlinks>

e <mailtoList>

<editLive>
<hyperlinks>
<mailtoList>
<!--mailto list configuration settings-->
</mailtoList>

</hyperlinks>

</editLive>

Child Elements

<mailtolink> This element defines an e-mail address that end users of EditLive!
for XML will be provided with via the Insert Hyperlink dialog.

Remarks

The <mailtoList> element can appear only once within the <hyperlinks> element.

<mailtolink> Configuration Element

This element allows for the specification of a single hyperlink that the end users of
Ephox EditLive! for XML will be provided with via the Insert Hyperlink dialog.

Configuration Element Tree Structure

e <editLive>

e <hyperlinks>

297

XML Configuration API

e <mailtoList>

e <mailtolink>

<editLive>
<hyperlinks>
<mailtoList>
<mailtolink ... />
</mailtoList>

</hyperlinks>

</editLive>

Required Attributes

href This attribute defines the e-mail address for the mailto link.

Optional Attributes

description This attribute specifies the description used for the mailto link in the
Insert Hyperlink dialog within EditLive! for XML.

Example

The following example demonstrates how to specify an e-mail address to provide the
end users of EditLive! for XML with.

<editLive>
<hyperlinks>

<mailtoList>
<mailtolink href="someone@mailserver.com"

208

XML Configuration API

description="This is a mailto link" />
</mailtoList>
</hyperlinks>

</editLive>

Remarks

The <mailtolink> element can appear multiple times within the <mailtoList>
element.

The <mailtolink> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<mailtolink href=... />

<menuBar> Configuration Element

The configuration information contained within this element contains the various
settings to use for the menu bar within Ephox EditLive! for XML.

Items will appear in the menu bar of EditLive! for XML, from left to right, in the order
that they appear in the EditLive! for XML configuration document.

| i,l Note

The configuration information within this element includes settings for
each menu (eg. View, Edit).

Configuration Element Tree Structure

e <editLive>

e <menuBar>

<editLive>

<menuBar>

299

XML Configuration API

<!--menu bar configuration settings-->
</menuBar>

</editLive>

Optional Attributes

showAboutMenu This attribute is a boolean which indicates if the Ephox logo
branding and associated About menu item should be placed on
the menu bar. When set to false the Ephox logo is removed from
the menu.

Default Value: true

Child Elements

<menu> This element contains the settings for a specific menu (eg. View, Edit).

Example

The following example demonstrates how to remove the Ephox logo from the menu
bar.

<editLive>
<menuBar showAboutMenu="false">
</menuBar>

</editLive>

Remarks

The <menuBar> element can appear only once within the <editLive> element.

<menu> Configuration Element

This element contains settings for a specific menu (eg. View, Edit). These settings

300

XML Configuration API

appear as a list of commands which appear on the menu.

Configuration Element Tree Structure

e <editLive>
e <menuBar>

e <menu>

<editLive>

<menuBar>
<menu>
<!--menu configuration settings-->
</menu>
</menuBar>

</editLive>

Required Attributes

name This attribute specifies the name of the menu (eg. Edit, View).

Child Elements

<menultem> This element contains information for an item on the menu
(eg. Cut, Undo, Table Properties).

<designerMenultem> This element specifies an item to include within a menu in
the Visual Designer.

<menultemGroup> This element contains information for a grouping on the
menu. The commands added by this element can only be
added and removed from the menu as a group.

A grouping is a set of two or more items which are related
and their selection is mutually exclusive within EditLive!

301

XML Configuration API

for XML. For example, the Source View and Design
View commands exist in a menultemGroup.

<menuSeparator> This element informs EditLive! for XML that it should
include a horizontal line, or menu separator, within the
menu.

<customMenultem> This element specifies the properties for a developer
defined custom menu item for use within Ephox EditLive!
for XML.

<submenu> This element contains information for a submenu item
which may be placed within a menu. The Font, Font Size
and Style submenus are an example of this.

Example

The following example demonstrates how to create a menu called Edit.

<editLive>

<menuBar>
<menu name="Edit">

</menu>
</menuBar>

</editLive>

Remarks

The <menu> element can appear multiple times within the <menuBar> element.

<menultem> Configuration Element

This element specifies an item to include within a menu in Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>

302

XML Configuration API

e <menuBar>

° <menu>

e <menultem>

<editLive>

<menuBar>
<menu>
<menultem ... />
</menu>
</menuBar>

</editLive>

Required Attributes

name This attribute gives the name for the menu item. For use within a <menu>
element it must be one of the following:
+ New - The New command.
« Open - The Open... command.
« Save - The Save command.
« SaveAs - The Save As... command.
« Undo - The Undo command.
« Redo - The Redo command.
« Cut - The Cut command.
+ Paste - The Paste command.

o SelectAll - The Select All command.

303

XML Configuration API

Find - The Find... command.

HLink - The Insert Hyperlink... command.

HRule - The Insert Horizontal Rule command.
Symbol - The Insert Symbol... command.
Bookmark - The Insert Bookmark... command.
ImageLocal - The Insert Local Image... command.
ImageServer - The Insert Server Image... command.
InsTable - The Insert Table... command.
InsRowCol - The Insert Row or Column command.
InsCell - The Insert Cell command.

DelRow -The Delete Row command.

DelCol - The Delete Column command.

DelCell - The Delete Cell command.

Split - The Split Cell... command.

Merge - The Merge Cells command.

PropCell - The Cell Properties... command.
PropTable - The Table Properties... command.
Gridlines - The Show Gridlines command.
Spelling - The Spelling... command.

WordCount - The Word Count... command.

Color - The (text) Color command.

Bold - The Bold command.

Italic - The Italic command.

Underline - The Underline command.

304

XML Configuration API

« Increaselndent - The Increase Indent command.

« Decreaselndent - The Decrease Indent command.

« PropRow - The Row Properties... command.

» PropCol - The Column Properties... command.

« HighlightColor - The Highlight Color command.

» Strike - The Strikethrough command.

+ RemoveFormatting - The Remove Formatting command.
» ProplList - The List Properties... command.

« PropImage - The Image Properties... command.

EditTag - The Edit Custom Tag... command.

The following items may only be used within EditLive! for XML

« xmlInsertBefore - The Insert Before command.

« xmlInsertAfter - The Insert After command.

« xmlInsertAtCurrent - The Insert Into command.

« xmlConvert - The Convert Element command.

« xmlAddAttribute - The Add Attribute command.

« xmlMoveUp - The Move Up command.

« xmlMoveDown - The Move Down command.

« xmlRemove - The Remove command.

« ShowDocumentNavigator - The Document Navigator command.
« ShowValidationPane - The Validation Pane command.
» xmlSelect - The Select (element) command.

In <submenu> items this attribute provides the value of the attribute. It should
correspond to the name or size of the relevant font or the value for the style.

305

XML Configuration API

The value used for this attribute will be inserted into the HTML source of the
document when the submenu item is selected.

Optional Attributes

text This attribute customizes the menu command text.
imageURL This attribute changes the image associated with a menu item.

mnemonic This attribute is a single letter which provides the mnemonic for the
menu item.

Examples

The following example demonstrates how to add the mnuUndo, mnuRedo, mnuCut,
mnuPaste, mnuSelectAll and mnuFind items to the Edit menu. Thus the instance of
EditLive! for XML using this configuration will have only an Edit menu with these
items.

<editLive>

<menuBar>
<menu name="Edit">
<menultem name="Undo"/>
<menultem name="Redo"/>
<menultem name="Cut"/>
<menultem name="Copy"/>
<menultem name="Paste"/>
<menultem name="SelectAll"/>
<menultem name="Find"/>
</menu>
</menuBar>

</editLive>

The following example demonstrates how to add the Times New Roman, Courier New
and Arial fonts to the mnuFontFace <submenu>. They will be listed as the New
Roman, Courier and Company Default fonts respectively, in the submenu due to their
text attributes

<editLive>

306

XML Configuration API

<menuBar>
<menu name="Format">
<submenu name="FontFace">
<menultem name="Times New Roman" text="New Roman"/>
<menultem name="Courier New" text="Courier"/>
<menultem name="Arial" text="Company Default"/>
</submenu>
</menu>
</menuBar>

</editLive>

Remarks

The <menuItem> element can appear multiple times within the <menu> element.

The <menuItem> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<menultem name=... />

See Also

o <submenu> Element

<designerMenultem> Configuration Element

This element specifies an item to include within a menu or the shortcut menu in the
Visual Designer.

Configuration Element Tree Structure

e <editLive>

e <menuBar>

307

XML Configuration API

° <menu>

¢ <designerMenultem>

OR

e <editLive>

e <shortcutMenu>

e <shrtMenu>

¢ <designerMenuItem>

<editLive>

<menuBar>
<menu>
<designerMenultem ... />
</menu>
</menuBar>

</editLive>

Required Attributes

name This attribute gives the name for the designer menu item. For use within a
<menu> element it must be one of the following:

« ControlProperties - The Control Properties... command.

+ ExportXSLT - The Export StyleSheet command

308

XML Configuration API

« ExportXSD - The Export Schema command.

Examples

The following example demonstrates how to add the FieldProperties, ExportXSLT and
ExportXSD items to the Designer menu. Thus the instance of the Visual Designer
using this configuration will have only a Designer menu with these items.

<editLive>

<menuBar>
<menu name="Designer">
<designerMenultem name="FieldProperties"/>
<designerMenultem name="ExportXSLT"/>
<designerMenultem name="ExportXSD"/>
</menu>
</menuBar>

</editLive>

Remarks

The <designerMenuItem> element can appear multiple times within the <menu>
element.

The <designerMenuItem> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<designerMenultem name=... />

<menultemGroup> Configuration Element

This element contains information for a grouping on the menu. The commands added
by this element can only be added and removed from the menu as a group.

A grouping is a set of two or more items which are related and their selection is
mutually exclusive within EditLive! for XML. For example, the Source View and
Design View commands exist in a <menuItemGroup>.

309

XML Configuration API

Configuration Element Tree Structure

e <editLive>
e <menuBar>
e <menu>

¢ <menultemGroup>

<editLive>

<menuBar>
<menu>
<menultemGroup ... />
</menu>
</menuBar>

</editLive>

Required Attributes

name This attribute gives the name for the command group. It must be one of the
following;:
» SourceView - The Design View and HTML View commands.
« FrameView - The Browser View and Window View commands.
+ List - The Ordered List and Unordered List commands.
« Align - The Align Left, Align Center and Align Right commands.

« Script - The Subscript and Superscript commands.

Examples

310

XML Configuration API

The following example demonstrates how to add the Design View and HTML View
commands to the menu bar.

<editLive>

<menuBar>
<menu name="View">

<menuGroupltem name="SourceView"/>
</menu>
</menuBar>

</editLive>

Remarks

The <menuGroupItem> element can appear multiple times within the <menu> element.

The <menuGroupItem> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<menuGroupltem name=... />

<menuSeparator> Configuration Element

This element places a horizontal separating line between commands within a Ephox
EditLive! for XML menu bar menu. This line will appear between the commands
defined by the <menuItem> elements immediately before and after the
<menuSeparator> element.

A

Note

This element has no attributes or child elements.

Configuration Element Tree Structure

e <editLive>

e <menuBar>

311

XML Configuration API

° <menu>

¢ <menuSeparator>

<editLive>

<menuBar>
<menu>
<menuSeparator/>
</menu>
</menuBar>

</editLive>

Examples

The following example demonstrates how to insert a menu separator into a menu. In
the instance of EditLive! for XML created from this configuration the menu separator
will appear between the Redo and the Cut commands.

<editLive>

<menuBar>
<menu name="Edit">
<menultem name="Undo"/>
<menultem name="Redo"/>
<menuSeparator/>
<menultem name="Cut"/>
<menultem name="Copy" />
<menultem name="Paste"/>
</menu>
</menuBar>

</editLive>

Remarks

312

XML Configuration API

The <menuSeparator> element can appear multiple times within the <menu> element.

The <menuSeparator> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<menuSeparator />

<customMenultem> Configuration Element

This element specifies the properties for a developer defined custom menu item for
use within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
e <menuBar>
e <menu>

¢ <customMenultem>

<editLive>
<menuBar>
<menu>
<customMenultem... />
</menu>

</menuBar>

</editLive>

Required Attributes

313

XML Configuration API

name The name which uniquely defines this custom menu item.
text The text to place on the menu for this item.
action The action which this menu item performs when clicked on.

A

Note

This attribute has the following possible values:

* insertHTMLAtCursor - Insert the given HTML at the cursor

* insertHyperlinkAtCursor - Insert the given hyperlink at
the cursor

» raiseEvent -Call a JavaScript function with the given name

* customPropertiesDialog - Call a JavaScript function with
the given name and pass it the current tag's properties

+ PostDocument - Post the content of the applet to a server side
script

value The value of the text or hyperlink to be inserted or the name of the
JavaScript function to be called when this menu item is clicked.

. Note

a

When using the insertHTMLAtCursor action the HTML to be
inserted must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?number=2396] in the XML
file. For example, <p>HTML to insert<p> becomes
$3Cp%$3EHTML%20t0%20insert$3C/p%3E.

Optional Attributes

imageURL The URL of the image to be placed on the menu with the menu item
text. The image should be of a .gif format and be a size of sixteen (16)
pixels high and sixteen (16) pixels wide.

314

http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

. Note

A

This URL can be relative or absolute. Relative URLSs are
relative to the location of the page in which EditLive! for
XML is embedded.

xhtmlonly This attribute defines whether the custom menu item should be
active only when the cursor is placed within an XHTML section.
Setting this attribute to true will ensure that the menu item is only
active when the cursor is within an XHTML section.

Default: false

enableintag This attribute defines in which tags the function should be enabled.
For example, when set to td the function will be enabled when the
cursor is within a <td> tag (i.e. a table cell).

Examples

The following example demonstrates how to define a custom menu item for use within
EditLive! for XML. The menu item defined in this example will insert HTML to
insert at the cursor, note that the value in the example below is URL encoded.

<editLive>
<menuBar>

<menu name="Example">
<customMenultem
name="customIteml"
text="Custom Item"
imageURL="http://www.someserver.com/imagel6x16.gif"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E" />
</menu>

</menuBar>

</editLive>

The following example demonstrates how to define a custom properties dialog which
is launched from a custom menu item for use within EditLive! for XML. The custom
properties dialog will be available for use when the cursor is inside any <td> tag.

315

XML Configuration API

<editLive>
<menuBar>

<menu name="Example">

<customMenultem
name="customPropertiesl"
text="Custom td Properties"
action="customPropertiesDialog"
value="customTDFunction"
enableintag="td"

/>

</menu>
</menuBar>

</editLive>

Remarks

The <customMenuItem> element can appear multiple times within the <menu>
element.

The <customMenuItem> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<customMenultem name=... />

Text assigned to the value attribute must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?number=2396] as it is in the example above.

See Also

« URL Encoding (RFC 2396) [http://www.ietf.org/rfc/rfc2396.txt?number=2396]
« Raising a JavaScript Event from Ephox EditLive! for XML

+ Custom Properties Dialogs for EditLive! for XML

+ Submitting EditLive! for XML Content Directly Via HTTP POST

e Custom Menu and Toolbar Items for EditLive! for XML

316

http://www.ietf.org/rfc/rfc2396.txt?number=2396
http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

<submenu> Configuration Element

This element contains information for a submenu item which may be placed within a
menu. The Font, Font Size and Style submenus are an example of this.

Configuration Element Tree Structure

e <editLive>
e <menuBar>
e <menu>

¢ <submenu>

<editLive>

<menuBar>
<menu>
<submen ... />
</menu>
</menuBar>

</editLive>

Required Attributes

name This attribute specifies the name of the submenu. It must be one of the
following;:
« mnuFontFace - The Font submenu.
« mnuFontSize - The Size submenu.
« mnuStyle - The Style submenu.

« mnuColor - The Color submenu. This submenu should only be used when

317

XML Configuration API

customizing the Color submenu as detailed in the section on Customizing
Color Choosers.

« mnuHighlightColor - The Highlight Color submenu. This submenu
should only be used when customizing the Highlight Color submenu as
detailed in the section on Customizing Color Choosers.

Child Elements

<menultem> This element contains information for an item on the menu (eg. font
items or font size items).

Examples

The following example demonstrates how to include the Font submenu in the
Format menu.

<editLive>

<menuBar>
<menu name="Format">
<submenu name="FontFace">

</submenu>
</menu>

</menuBar>

</editLive>

Remarks

The <submenu> element can appear multiple times within the <menu> element.

See Also

« Customizing Color Choosers

318

XML Configuration API

<toolbars> Element

This element contains the configuration information for the toolbars within Ephox
EditLive! for XML. This includes the Format and the Command toolbars and the
buttons and combo boxes contained within them.

Element Tree Structure

e <editLive>

¢ <toolbars>

<editLive>
<toolbars>
<!--toolbars configuration settings-->

</toolbars>

</editLive>

Child Elements

<toolbar> This element contains the configuration information for a toolbar
within EditLive! for XML.

Remarks

The <toolbars> element can appear only once within the <editLive> element.

<toolbar> Configuration Element

This element contains the configuration information for a toolbar for use within
Ephox EditLive! for XML.

Items will appear in a toolbar in EditLive! for XML, from left to right, in the order that
they appear in the EditLive! for XML configuration document.

Configuration Element Tree Structure

319

XML Configuration API

e <editLive>

e <toolbars>

e <toolbar>

<editLive>
<toolbars>
<toolbar ...>
<!--toolbar configuration settings-->
</toolbar>
</toolbars>
</editLive>

Required Attributes

name An identifying name for this toolbar. The value for this attribute must be
unique within the collection of toolbars for EditLive! for XML.

Child Elements

<toolbarButton> This element will cause a particular button to be present on the
toolbar within EditLive! for XML.

<toolbarButtonGroup> This element will cause a particular group of buttons to
be present on the toolbar within EditLive! for XML. The
operation of these buttons within EditLive! for XML will
be mutually exclusive. The buttons added by this
element can only be added and removed from the
toolbar as a group.

For example, the alignment buttons are a button group
as Align Left cannot be activated at the same time as
Align Right.

320

XML Configuration API

<toolbarComboBox> This element will cause a particular combo box to be present
on the toolbar within EditLive! for XML.

<toolbarSeparator> This element will cause the appearance of a vertical
separating line between toolbar elements.

<customToolbarButton> This element specifies the properties for a developer
defined custom toolbar button for use within Ephox
EditLive! for XML.

<customToolbarComboBox> This element specifies the properties for a developer
defined custom toolbar combo box for use within
Ephox EditLive! for XML.

Example

This example demonstrates how to declare toolbars with the name command and

format.

<editLive>
<toolbars>
<toolbar name="command">

</toolbar>
<toolbar name="format">

</toolbar>
</toolbars>

</editLive>

Remarks

Toolbars will appear in the EditLive! for XML interface in the order that they appear
in the configuration file.

321

XML Configuration API

The <toolbar> element can appear multiple times within the <toolbars> element.

<toolbarButtonGroup> Element

This element will cause a particular group of buttons to be present on the toolbar
within Ephox EditLive! for XML. The buttons added by this element can only be added
and removed from the toolbar as a group.

The operation of these buttons within EditLive! for XML will be mutually exclusive.
For example, the alignment buttons are a button group as Align Left cannot be
activated at the same time as Align Right.

Element Tree Structure

e <editLive>
e <toolbars>
e <toolbar>

¢ <toolbarButtonGroup>

<editLive>

<toolbars>
<toolbar>
<toolbarButtonGroup ... />
</toolbar>
</toolbars>

</editLive>

Required Attributes

name This attribute gives the name for the button group. It must be one of the
following;:

322

XML Configuration API

« Align - The Align Left, Align Center and Align Right buttons.
» List - The Ordered List and Unordered List buttons.

« Script - The Subscript and Superscript buttons.

Example

The following example demonstrates how to add the alignment buttons to the
Format Toolbar.

<editLive>

<toolbars>
<toolbar name="format">
<toolbarButtonGroup name="Align" />
</toolbar>
</toolbars>

</editLive>

Remarks

The <toolbarButtonGroup> element can appear multiple times within the
<toolbar> elements.

The <toolbarButtonGroup> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<toolbarButtonGroup name=... />

<toolbarSeparator> Configuration Element

This element will cause the appearance of a vertical separating line between toolbar
elements in Ephox EditLive! for XML.

A

Note

This element has no attributes or child elements.

323

XML Configuration API

Configuration Element Tree Structure

e <editLive>
e <toolbars>
e <toolbar>

¢ <toolbarSeparator>

<editLive>

<toolbars>
<toolbar>
<toolbarSeparator />
</toolbar>
</toolbars>

</editLive>

Example

The following example demonstrates how to insert a toolbar separator between the
Paste and Find buttons on the Command Toolbar.

<editLive>

<toolbars>
<toolbar name="command">
<toolbarButton name="tlbCut"/>
<toolbarButton name="tlbCopy"/>
<toolbarButton name="tlbPaste"/>
<toolbarSeparator/>
<toolbarButton name="tlbFind"/>
</toolbar>
</toolbars>

</editLive>

324

XML Configuration API

Remarks

The <toolbarSeparator> element can appear multiple times within the <toolbar>
element.

The <toolbarSeparator> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<toolbarSeparator />

<toolbarButton> Element

This element will cause a particular button to be present on the toolbar within Ephox
EditLive! for XML.

Element Tree Structure

e <editLive>
e <toolbars>
e <toolbar>

¢ <toolbarButton>

<editLive>

<toolbars>
<toolbar>
<toolbarButton ... />
</toolbar>
</toolbars>

</editLive>

Required Attributes

325

XML Configuration API

name

This attribute gives the name for the button. It must be one of the following:

Cut - The Cut button.

Copy - The Copy button.

Paste - The Paste button.

Find - The Find button.

Undo - The Undo button.

Redo - The Redo button.

HRule - The Insert Horizontal Rule button.
HLink - The Hyperlink button.

Symbol - The Insert Symbol button.
Bookmark - The Insert Bookmark button.
ImageServer - The Insert Server Image button.
InsTable - The Insert Table button.
InsRow - The Insert Row button.

InsCol - The Insert Column button.
DelRow - The Delete Row button.

DelCol - The Delete Column button.

Split - The Split Cell button.

Merge - The Merge Cells button.

Gridlines - The Show Gridlines button.
Bold - The Bold button.

Italics - The Italics button.

Underline - The Underline button.

Color - The (text) Color button.

326

XML Configuration API

» Spelling - The Check Spelling button.

« Increaselndent - The Increase Indent button.

« Decreaselndent - The Decrease Indent button.

+ New - The New button.

« Open - The Open... button.

» Save - The Save button.

» Strike - The Strikethrough button.

+ RemoveFormatting - The Remove Formatting button.
« HighlightColor - The Highlight Color button.

+ WordCount - The Word Count button.
The following items may only be used within EditLive! for XML

« xmlMoveUp - The Move Up command.
« xmlMoveDown - The Move Down command.

o xmlValidate - The Validate XML command.

Example

The following example demonstrates how to add the Cut, Copy and Paste buttons to
the Command Toolbar.

<editLive>

<toolbars>
<toolbar name="command">
<toolbarButton name="Cut"/>
<toolbarButton name="Copy"/>
<toolbarButton name="Paste"/>
</toolbar>
</toolbars>

</editLive>

327

XML Configuration API

Remarks

The <toolbarButton> element can appear multiple times within the <toolbar>
elements.

The <toolbarButton> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<toolbarButton name=... />

<toolbarComboBox> Element

This element will cause a particular combo box to be present on the toolbar within
Ephox EditLive! for XML.

Element Tree Structure

e <editLive>
e <toolbars>
e <toolbar>

¢ <toolbarComboBox>

<editLive>
<toolbars>
<toolbar>
<toolbarComboBox ... >
<!--toolbar combo box configuration settings-->
</toolbarComboBox>
</toolbar>
</toolbars>
</editLive>

328

XML Configuration API

Required Attributes

name This attribute gives the name for the button group. It must be one of the
following;:

tlbStyle - The Style combo box containing the various styles available to
end users (eg. Heading 1, Heading 2).

« tlbFace - The Typeface combo box containing the various typefaces or
fonts available to end users (eg. Times New Roman, Arial).

« tlbSize - The Size combo box containing the various font sizes available to
end users (eg. 12pt, 14pt).

 tlbColor - The Color drop down. This drop down should only be used
when customizing the Color drop down as detailed in the section on
Customizing Color Choosers.

« tlbHighlightColor - The Highlight Color drop down. This drop down
should only be used when customizing the Highlight Color drop down as
detailed in the section on Customizing Color Choosers.

Child Elements

<comboBoxItem> This element contains the information required by EditLive! for
Java to configure an item within one of the EditLive! for XML
combo boxes.

Example

The following example demonstrates how to add the Style combo box to the Format
Toolbar.

<editLive>

<toolbars>
<toolbar name="format">
<toolbarComboBox name="Style">

</toolbarComboBox>
</toolbar>

329

XML Configuration API

</toolbars>

</editLive>

Remarks

The <toolbarComboBox> element can appear multiple times within the <toolbar>
element.

See Also

« Customizing Color Choosers

<comboBoxItem> Configuration Element

This element contains the information required by Ephox EditLive! for XML to
configure an item within one of the EditLive! for XML combo boxes.

Configuration Element Tree Structure

e <editLive>
¢ <toolbars>
¢ <toolbar>
¢ <toolbarComboBox>

¢ <comboBoxItem>

<editLive>

<toolbars>
<toolbar>

330

XML Configuration API

<toolbarComboBox ...
<comboBoxItem ...

</toolbarComboBox>
</toolbar>
</toolbars>

</editLive>

/>

Required Attributes

name The value of the name attribute is different depending on the type of combo
box being configured. The following gives information on the way that the
name attribute is used in each case:

Style Combo Box

Typeface Combo Box

This attribute gives the value to be used when the
item is being inserted into the HTML source code.
When used in the Style combo box the name
attribute gives the name of the tag inserted into the
HTML source code within EditLive! for Java.

Example: If the name attribute was set to H1 then
the <H1> tag would be inserted into the HTML
when this style was used.

This attribute gives the value to be used when the
item is being inserted into the HTML source code.
When used in the Typeface combo box the name
attribute gives the value used for the face attribute
within the tag used within the EditLive! for
Java HTML source code.

Example: If the name attribute was set to Times
New Roman then the following tag would
be inserted into the EditLive! for XML HTML
source code:

Size Combo Box

This attribute gives the value to be used when the
item is being inserted into the HTML source code.

331

XML Configuration API

When used in the Size combo box the name
attribute gives the value used for the size attribute
within the tag used within the EditLive! for
Java HTML source code.

» Note
A
The name attribute for the Size combo
box must be between 1 and 7, inclusive.

Example: If the name attribute was set to 3 then the
following <rFonT> tag would be inserted into the
EditLive! for XML HTML source code:

Optional Attributes

text This attribute gives the value which appears inside the relevant combo box
within EditLive! for XML (eg. Heading 1, Normal, 12pt, Times New Roman).

Example

The following example adds the Hz1 style to the Style combo box so that it appears as
"Heading 1" inside the combo box in EditLive! for XML. Also added is the Arial font to
the Typeface combo box and it is listed as "Company Font" in the combo box in
EditLive! for XML. Finally the HTML font size 3 is added to the Size combo box and
lists it as "12pt" in the combo box in EditLive! for XML.

All the combo boxes in this example are added to the Format Toolbar.

<editLive>

<toolbars>
<toolbar name="format">
<toolbarComboBox name="Style">
<comboBoxItem name="H1" text="Heading 1"/>

332

XML Configuration API

</toolbarComboBox>
<toolbarComboBox name="Face">
<comboBoxItem name="Arial" text="Company Font"/>
</toolbarComboBox>
<toolbarComboBox name="Size">
<comboBoxItem name="3" text="12pt"/>
</toolbarComboBox>
</toolbar>
</toolbars>

</editLive>

Remarks

The <comboBoxItem> element can appear multiple times within the
<toolbarComboBox> element.

The <comboBoxItem> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<comboBoxItem name=... />

<customToolbarButton> Configuration Element

This element will cause a particular button to be present on the toolbar within Ephox
EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
s <toolbars>
e <toolbar>

¢ <customToolbarButton>

333

XML Configuration API

<editLive>

<toolbars>
<toolbar>
<customToolbarButton ... />
</toolbar>
</toolbars>

</editLive>

Required Attributes

name The name which uniquely defines this custom toolbar button.
text The tooltip text for this custom toolbar button.

action The action which this toolbar button performs when clicked on.

» Note
A
This attribute has the following possible values:

* insertHTMLAtCursor - Insert the given HTML at the cursor

* insertHyperlinkAtCursor - Insert the given hyperlink at
the cursor

+ raiseEvent -Call a JavaScript function with the given name

e customPropertiesDialog - Call a JavaScript function with
the given name and pass it the current tag's properties

+ PostDocument - Post the content of the applet to a server side
script

value The value of the text or hyperlink to be inserted or the name of the JavaScript

334

XML Configuration API

function to be called when this toolbar button is clicked.

A

imageURL

xhtmlonly

enableintag

Example

Note

When using the insertHTMLAtCursor action the HTML to be
inserted must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?>number=2396] in the XML
file. For example, <p>HTML to insert<p> becomes
%3Cp%3EHTML%20t0%20insert%3C/p%3E.

The URL of the image to be placed on the menu with the menu item
text. The image should be of a . gif format and be a size of sixteen
(16) pixels high and sixteen (16) pixels wide.

* Note

1)

This URL can be relative or absolute. If relative the URL is
relative to the URL of the page in which EditLive! for
XML is embedded.

This attribute defines whether the custom toolbar button should be
active only when the cursor is placed within an XHTML section.
Setting this attribute to t rue will ensure that the toolbar button is
only active when the cursor is within an XHTML section.

Default: false

This attribute defines in which tags the function should be enabled.
For example, when set to td the function will be enabled when the
cursor is within a <td> tag (i.e. a table cell).

The following example demonstrates how to define a custom toolbar button for use
within EditLive! for XML on the Command Toolbar. The button defined in this
example will insert HTML to insert at the cursor, note that the value in the example
below is URL encoded.

<editLive>

<toolbars>

335

http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

<toolbar name="command">
<customToolbarButton

name="customButtonl"
text="Custom Button"
imageURL="http://www.someserver.com/image20x20.gif"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E" />

</toolbar>

</toolbars>

</editLive>

The following example demonstrates how to define a custom toolbar button for use
within EditLive! for XML on the Format Toolbar. The button defined in this
example is used with a custom properties dialog. The custom properties dialog will be
available for use when the cursor is inside any <td> tag.

<editLive>

<toolbars>
<toolbar name="format">
<customToolbarButton
name="customPropButtonl"
text="Custom td Properties"
imageURL="http://www.someserver.com/image20x20.gif"
action="customPropertiesDialog"
value="customTDFunction"
enableintag="td"
/>
</toolbar>
</toolbars>

</editLive>

Remarks

The <customToolbarButton> element can appear multiple times within the
<toolbar>.

The <customToolbarButton> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<customToolbarButton name=... />

336

XML Configuration API

Text assigned to the value attribute must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?number=2396] as it is in the example above.

See Also

« URL Encoding (RFC 2396) [http://www.ietf.org/rfc/rfc2396.txt?number=2396]
« Raising a JavaScript Event from Ephox EditLive! for XML

+ Custom Properties Dialogs for EditLive! for XML

+ Submitting EditLive! for XML Content Directly Via HTTP POST

e Custom Menu and Toolbar Items for EditLive! for XML

<customToolbarComboBox> Configuration Element

This element specifies the properties for a developer defined custom toolbar combo
box for use within Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
e <toolbars>
e <toolbar>

¢ <customToolbarComboBox>

<editLive>

<toolbars>
<toolbar>
<customToolbarComboBox>
<!--custom toolbar combo box settings-->
</customToolbarComboBox>
</toolbar>

337

http://www.ietf.org/rfc/rfc2396.txt?number=2396
http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

</toolbars>

</editLive>

Required Attributes

name The name which uniquely defines this custom toolbar combo box.

Optional Attributes

xhtmlonly This attribute defines whether the custom toolbar combo box should be
active only when the cursor is placed within an XHTML section. Setting
this attribute to t rue will ensure that the toolbar combo box is only
active when the cursor is within an XHTML section.

Default: false

Child Elements

<customComboBoxItem> This element defines an item which is to be used within a
custom combo box.

Example

The following example demonstrates how to define a custom toolbar combo box for
use within EditLive! for XML on the Command Toolbar.

<editLive>

<toolbars>
<toolbar name="command">
<customToolbarComboBox name="CustomCombo">
<!--customToolbarComboBox settings-->
</customToolbarComboBox>
</toolbar name="command">
</toolbars>

</editLive>

338

XML Configuration API

Remarks

The <customToolbarComboBox> element can appear multiple times within the
<toolbar> element.

<customComboBoxItem> Configuration Element

This element specifies the properties for a developer defined custom combo box item
for use within Ephox EditLive! for XML. The custom combo box item must be listed
within a <customToolbarComboBox> element and will therefore appear on one of the
toolbars within EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <toolbars>
¢ <toolbar>
¢ <customToolbarComboBox>

¢ <customComboBoxItem>

<editLive>

<toolbars>
<toolbar>
<customToolbarComboBox>
<customComboBoxItem ... />
</customToolbarComboBox>
</toolbar>
</toolbars>

</editLive>

339

XML Configuration API

Required Attributes

name

text

action

value

Example

The name which uniquely defines this custom combo box item within the
<customToolbarComboBox> element. This means that there cannot be two
<customComboBoxItem> elements with the same name within one
<customToolbarComboBox> element.

The text to represent this item within the combo box it is to be listed in.

The action which this custom combo box item performs when selected.

. Note
)

This attribute has the following possible values:

e insertHTMLAtCursor - Insert the given HTML at the cursor

* insertHyperlinkAtCursor - Insert the given hyperlink at
the cursor

» raiseEvent -Call a JavaScript function with the given name

* customPropertiesDialog - Call a JavaScript function with
the given name and pass it the current tag's properties

+ PostDocument - Post the content of the applet to a server side
script

The value of the text or hyperlink to be inserted or the name of the
JavaScript function to be called when this toolbar button is clicked.

. Note

a

When using the insertHTMLAtCursor action the HTML to be
inserted must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?number=2396] in the XML
file. For example, <p>HTML to insert<p> becomes
%3Cp%3EHTML%20t0%20insert%3C/p%3E.

340

http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

The following example demonstrates how to define a custom combo box item for use
within a custom combo box which exists on the EditLive! for Java Command
Toolbar. The combo box item defined in this example will insert HTML to insert at
the cursor, note that the value in the example below is URL encoded.

<editLive>

<toolbars>
<toolbar name="command">
<customToolbarComboBox name="customCombo">
<customComboBoxItem
name="customComboIteml"
text="Custom Combo Item"
action="insertHTMLAtCursor"
value="%3Cp%3EHTML%20t0%20insert%3C/p%3E" />
</customToolbarComboBox>
</toolbar>
</toolbars>

</editLive>

Remarks

The <customComboBoxItem> element can appear multiple times within the
<customToolbarComboBox> element.

The <customComboBoxItem> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<customComboBoxItem name=... />

Text assigned to the value attribute must be URL encoded
[http://www.ietf.org/rfc/rfc2396.txt?number=2396] as it is in the example above.

See Also

« URL Encoding (RFC 2396) [http://www.ietf.org/rfc/rfc2396.txt?number=2396]
« Raising a JavaScript Event from Ephox EditLive! for XML

« Custom Properties Dialogs for EditLive! for XML

341

http://www.ietf.org/rfc/rfc2396.txt?number=2396
http://www.ietf.org/rfc/rfc2396.txt?number=2396

XML Configuration API

» Submitting EditLive! for XML Content Directly Via HTTP POST

e Custom Menu and Toolbar Items for EditLive! for XML

<shortcutMenu> Configuration Element

This element contains the configuration information for the shortcut menu within
Ephox EditLive! for XML.

Configuration Element Tree Structure

e <editLive>

¢ <shortcutMenu>

<editLive>
<shortcutMenu>
<!--shortcut menu configuration settings-->

</shortcutMenu>

</editLive>

Child Elements

<shrtMenu> This element allows for configuration of the shortcut menu within
Ephox EditLive! for XML.

<elementMenu> This element allows for the configuration of the element menu
associated with the Document Navigator bar in EditLive! for XML.

| iJ Note

This element is only applicable when creating a
configuration file for EditLive! for XML.

Remarks

342

XML Configuration API

The <shortcutMenu> element can appear only once within the <editLive> element.

<shrtMenu> Configuration Element

This element allows for the configuration of the shortcut menu within Ephox EditLive!
for XML. It is the child element of the <shortcutMenu> element.

Configuration Element Tree Structure

e <editLive>
* <shortcutMenu>

¢ <shrtMenu>

<editLive>

<shortcutMenu>
<shrtMenu>
<!--short menu configuration settings-->
</shrtMenu>
</shortcutMenu>
</editLive>

Child Elements

<shrtMenultem> This element defines command items for the shortcut
menu.
<designerMenultem> This element specifies an item to include within the

shortcut menu in the Visual Designer.

<shrtMenuSeparator> This element will cause the appearance of a horizontal
separating line between shortcut menu commands.

Remarks

343

XML Configuration API

The <shrtMenu> element can appear only once within the <shortcutMenu> element.

<shrtMenultem> Configuration Element

This element defines command items for the shortcut menu within Ephox EditLive!
for XML.

Configuration Element Tree Structure

e <editLive>
* <shortcutMenu>
e <shrtMenu>

¢ <shrtMenuItem>

<editLive>

<shortcutMenu>
<shrtMenu>
<shrtMenultem ... />
</shrtMenu>
</shortcutMenu>

</editLive>

Required Attributes

name This attribute gives the name for the shortcut menu command. It must be one
of the following;:

o New - The New command.

« Open - The Open... command.

344

XML Configuration API

Save - The Save command.

SaveAs - The Save As... command.

Undo - The Undo command.

Redo - The Redo command.

Cut - The Cut command.

Paste - The Paste command.

SelectAll - The Select All command.

Find - The Find... command.

HLink - The Insert Hyperlink... command.

HRule - The Insert Horizontal Rule command.
Symbol - The Insert Symbol... command.
Bookmark - The Insert Bookmark... command.
ImageLocal - The Insert Local Image... command.
ImageServer - The Insert Server Image... command.
InsTable - The Insert Table... command.
InsRowCol - The Insert Row or Column command.
InsCell - The Insert Cell command.

DelRow -The Delete Row command.

DelCol - The Delete Column command.

DelCell - The Delete Cell command.

Split - The Split Cell... command.

Merge - The Merge Cells command.

PropCell - The Cell Properties... command.

PropTable - The Table Properties... command.

345

XML Configuration API

Gridlines - The Show Gridlines command.
Spelling - The Spelling... command.

WordCount - The Word Count... command.

Color - The (text) Color command.

Bold - The Bold command.

Italic - The Italic command.

Underline - The Underline command.
Increaselndent - The Increase Indent command.
Decreaselndent - The Decrease Indent command.
PropRow - The Row Properties... command.
PropCol - The Column Properties... command.
HighlightColor - The Highlight Color command.
Strike - The Strikethrough command.
RemoveFormatting - The Remove Formatting command.
PropList - The List Properties... command.
PropImage - The Image Properties... command.
EditTag - The Edit Custom Tag... command.

Style - The Style submenu.

FontFace - The Font submenu.

Size - The Size submenu.

Reformat - The Reformat Code command.

The following items may only be used within EditLive! for XML

xmlInsertBefore - The Insert Before command.

xmlInsertAfter - The Insert After command.

346

XML Configuration API

« xmlInsertAtCurrent - The Insert Into command.

« xmlConvert - The Convert Element command.

- xmlAddAttribute - The Add Attribute command.

« xmlMoveUp - The Move Up command.

« xmlMoveDown - The Move Down command.

« xmlRemove - The Remove command.

» ShowDocumentNavigator - The Document Navigator command.
« ShowValidationPane - The Validation Pane command.

» xmlSelect - The Select (element) command.

Example

The following example configures the Shortcut Menu of EditLive! for XML so that it
contains the Cut, Copy, Paste, Select All, Image Properties..., Table
Properties..., Cell Properties and Hyperlink Properties... commands.

<editLive>
<shortcutMenu>
<shrtMenu>
<shrtMenultem name="Cut" />
<shrtMenuItem name="Copy" />
<shrtMenultem name="Paste" />
<shrtMenultem name="SelectAll" />
<shrtMenultem name="PropImage" />
<shrtMenultem name="PropTable" />
<shrtMenultem name="PropCell" />
<shrtMenultem name="Hyperlink" />
</shrtMenu>
</shortcutMenu>
</editLive>
Remarks

The <shrtMenuItem> element can appear multiple times within the <shrtMenu>

347

XML Configuration API

element.

The <shrtMenuItem> element must be a complete tag, it cannot contain a tag body.
Therefore the tag must be closed in the same line. See the example below:

<shrtMenultem name=... />

<shrtMenuSeparator> Configuration Element

This element places a horizontal separating line between commands within the Ephox
EditLive! for XML shortcut menu. This line will appear between the commands
defined by the <shrtMenuItem> elements immediately before and after the
<shrtMenuSeparator> element.

A

Note

This element has no attributes or child elements.

Configuration Element Tree Structure

e <editLive>
e <shortcutMenu>

e <shrtMenu>
OR

<elementMenu>

¢ <shrtMenuSeparator>

<editLive>

<shortcutMenu>
<shrtMenu>
<shrtMenuSeparator/>

348

XML Configuration API

</shrtMenu>
</shortcutMenu>

</editLive>

Examples

The following example places a shortcut menu separator between the Paste and the
Select All commands in the EditLive! for XML shortcut menu.

<editLive>

<shortcutMenu>
<shrtMenu>
<shrtMenultem name="Cut" />
<shrtMenultem name="Copy" />
<shrtMenultem name="Paste" />
<shrtMenuSeparator/>
<shrtMenultem name="SelectAll" />
</shrtMenu>
</shortcutMenu>
</editLive>

Remarks

The <shrtMenuSeparator> element can appear multiple times within the
<shrtMenu> element.

The <shrtMenuSeparator> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<shrtMenuSeparator />

<elementMenu> Configuration Element

This element allows for the configuration of the element menu associated with the
Document Navigator Bar in EditLive! for XML. It is the child element of the
<shortcutMenu> element.

349

XML Configuration API

| i,l Note

This element only applies when configuring EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <shortcutMenu>

¢ <elementMenu>

<editLive>

<shortcutMenu>
<elementMenu>
<!--element menu configuration settings-->
</element>
</shortcutMenu>
</editLive>

Child Elements

<elementMenultem> This element defines command items for the element
menu associated with the Document Navigator Bar
within Ephox EditLive! for XML.

<shrtMenuSeparator> This element will cause the appearance of a horizontal
separating line between element menu commands.

Remarks

The <elementMenu> element can appear only once within the <shortcutMenu>
element.

<elementMenultem> Configuration Element

350

XML Configuration API

This element defines command items for the element menu associated with the
Document Navigator Bar within Ephox EditLive! for XML.

| LI Note

This element only applies when configuring EditLive! for XML.

Configuration Element Tree Structure

e <editLive>
¢ <shortcutMenu>
¢ <elementMenu>

¢ <elementMenuItem>

<editLive>

<shortcutMenu>
<elementMenu>
<elementMenultem ... />
</elementMenu>
</shortcutMenu>

</editLive>

Required Attributes

name This attribute gives the name for the shortcut menu command. It must be one
of the following:

e New - The New command.

« Open - The Open... command.

351

XML Configuration API

Save - The Save command.

SaveAs - The Save As... command.

Undo - The Undo command.

Redo - The Redo command.

Cut - The Cut command.

Paste - The Paste command.

SelectAll - The Select All command.

Find - The Find... command.

HLink - The Insert Hyperlink... command.

HRule - The Insert Horizontal Rule command.
Symbol - The Insert Symbol... command.
Bookmark - The Insert Bookmark... command.
ImageLocal - The Insert Local Image... command.
ImageServer - The Insert Server Image... command.
InsTable - The Insert Table... command.
InsRowCol - The Insert Row or Column command.
InsCell - The Insert Cell command.

DelRow -The Delete Row command.

DelCol - The Delete Column command.

DelCell - The Delete Cell command.

Split - The Split Cell... command.

Merge - The Merge Cells command.

PropCell - The Cell Properties... command.

PropTable - The Table Properties... command.

352

XML Configuration API

Gridlines - The Show Gridlines command.

Spelling - The Spelling... command.

WordCount - The Word Count... command.

Color - The (text) Color command.

Bold - The Bold command.

Italic - The Italic command.

Underline - The Underline command.

Increaselndent - The Increase Indent command.
Decreaselndent - The Decrease Indent command.
PropRow - The Row Properties... command.

PropCol - The Column Properties... command.
HighlightColor - The Highlight Color command.
Strike - The Strikethrough command.
RemoveFormatting - The Remove Formatting command.
PropList - The List Properties... command.
PropImage - The Image Properties... command.
EditTag - The Edit Custom Tag... command.

Style - The Style submenu.

FontFace - The Font submenu.

Size - The Size submenu.

ShowDocumentNavigator - The Document Navigator command.
ShowValidationPane - The Validation Pane command.
Reformat - The Reformat Code command.

xmlAddAttribute - The Add Attribute command.

353

XML Configuration API

« xmlInsertBefore - The Insert Before command.
« xmlInsertAfter - The Insert After command.

« xmlInsertAtCurrent - The Insert Into command.
« xmlConvert - The Convert Element command.
« xmlMoveUp - The Move Up command.

« xmlMoveDown - The Move Down command.

« xmlRemove - The Remove command.

+ xmlSelect - The Select (element) command.

Example

The following example configures the Shortcut Menu of EditLive! for XML so that it
contains the Insert Before, Insert After, Insert Into, Convert Element, Select,
and Remove commands.

<editLive>

<shortcutMenu>
<elementMenu>
<elementMenultem name="xmlInsertBefore"/>
<elementMenultem name="xmlInsertAfter"/>
<elementMenultem name="xmlInsertAtCurrent"/>
<elementMenultem name="xmlConvert"/>
<elementMenultem name="xmlSelect"/>
<shrtMenuSeparator/>
<elementMenultem name="xmlRemove" />
</elementMenu>
</shortcutMenu>
</editLive>

Remarks

It is recommended that element menu be configured so that it contains only items
with functionality relating to XML elements such as Insert Before and Convert
Element.

354

XML Configuration API

The <elementMenuItem> element can appear multiple times within the
<elementMenu> element.

The <elementMenuItem> element must be a complete tag, it cannot contain a tag
body. Therefore the tag must be closed in the same line. See the example below:

<elementMenultem name=... />

355

base, 191, 251

comboBoxItem, 330
customComboBoxItem, 339
customMenultem, 313

A customToolbarButton, 333
addViewAsText method, 183 customToolbarComboBox, 337
addView method, 25, 30, 181 designerMenultem, 307

Index

addXSDAsText method, 185
anySimpleType data type, 58
ASP

URL encoding content, 53
ASP.NET

URL encoding content, 53
attributes, 57

adding to a view, 62

moving within a schema, 61
authentication configuration element, 289
automatic submission

disabling, 46
AutoSubmit property, 46, 189

base configuration element, 191, 251
BaseURL property, 190

boolean data type, 58

buttons, 65

C

caching, 15
cascading stylesheets, 68
character count, 223
character encoding, 53, 153
character set

configuring, 154
character sets, 153
check box control, 63
ClassNotFound Exception, 15
ColdFusion

URL encoding content, 55
color choosers, 104
comboBoxItem configuration element, 330
configuration elements

authentication, 289

document, 248
editLive, 246
elementMenu, 349
ephoxLicenses, 17, 257
head, 250

html, 249

htmlFilter, 263
httpImageUpload, 275
httpUploadData, 277
hyperlink, 294
hyperlinkList, 293
image, 280

imageList, 279
images, 273

license, 258

licenses, 17

link, 253

mailtolink, 297
mailtoList, 206
mediaSettings, 272
menu, 300

menubar, 299
menultem, 302
menultemGroup, 309
menuSeparator, 311
realm, 144, 290
repository, 141, 285
shortcutMenu, 342
shrtMenu, 343
shrtMenultem, 344
shrtMenuSeparator, 348
sourceEditor, 269
spellCheck, 261
style, 256
submenu, 317
toolbarButton, 325

toolbarButtonGroup, 322

356

Index

toolbarComboBox, 328

toolbars, 319

toolbarSeparator, 323

webdav, 141, 283

wordImport, 271

wysiwygEditor, 266

xmlEditor, 268
configuration elementst

oolbar, 319
ConfigurationFile property, 25, 29, 192
ConfigurationText property, 193
constraints, 60
content

check validity, 235

retrieving at runtime, 224, 226

saving and loading, 20, 224
Cookie property, 195
CSS, 68
customComboBoxItem configuration element,
339
customization

color choosers, 104

custom items, 108

dictionaries, 80

existing interface items, 103

interface, 85

property dialogs, 118
customMenultem configuration element, 313
customToolbarButton configuration element,
333
customToolbarComboBox configuration
element, 337

D

data types
anySimpleType, 58
boolean, 58
date, 58
dateTime, 59
decimal, 58
integer, 58
string, 58
time, 59
xhtml, 60

date data type, 58
date picker control, 63
dateTime data type, 59
date time picker controls, 63
DebugLevel property, 196
decimal data type, 58
default values, 60
deploying
client, 13
EditLive! for XML, 5
Java Runtime Environment, 78
samples, 4
server, 4
deployment
minimizing, 74
designerMenultem configuration element, 307
dialogs
custom dialogs, 118
dictionaries
customizing, 80
document configuration element, 248
Document property, 25, 198
DownloadDirectory property, 5, 25, 29, 199
drop down list control, 63

E
EditLive! for XML
components, 20
retrieving content, 45
editLive configuration element, 246
editlivexml.js file, 24
EditLiveXML object, 25
elementMenu configuration element, 349
elements, 57
adding to a view, 62
maximum occurrences, 61
minimum occurrences, 60
moving within a schema, 61
optional, 60
repeating, 60
encoding
characters, 53, 153
ephoxLicenses configuration element, 17, 257
escape function in JavaScript, 55

357

Index

evaluation license key, 4, 16
example

basic integration, 23

visual designer integration, 27

exporting Visual Designer files, 66

F

form.submit(), 46
form controls
buttons, 65
check box, 63
date picker, 63
date time picker, 63
drop down list, 63
list, 64
rich text, 64
text field, 64
time picker, 64
functions
GetCharCount, 223
GetDocument, 46, 224
GetSelectedText, 226
GetWordCount, 229
InerstHyperlinkAtCursor, 232
InsertHTMLAtCursor, 230
IsValid, 235
PostDocument, 236
SetDocument, 238
SetProperties, 240
SetXMLNodeValue, 242
UploadImages, 244

G

GetCharCount function, 223
GetDocument function, 46, 224
GetSelectedText function, 226
GetWordCount function, 229
group elements, 57
groups

repeating, 61

H

head configuration element, 250

HideButtonIconURL property, 200
HideButtonText property, 202

html configuration element, 249
htmlFilter configuration element, 263

httpImageUpload configuration element, 275
httpUploadData configuration element, 277

hyperlink configuration element, 294
hyperlinkList configuration element, 293
hyperlinks

insert using a custom button, 110

I

image configuration element, 280
imageList configuration element, 279
images configuration element, 273
image uploading, 125

ASP.NET script, 132

ASP script, 129

JSP script, 135

post field, 127

sample scripts, 6, 128
InsertHTMLAtCursor function, 230
InsertHyperlinkAtCursor function, 232
inserting HTML, 110
inserting hyperlinks, 110
installation

client, 13

server, 4
integer data type, 58
interface

commands, 95

customizing, 85

removing functionality, 107

tab views, 106
internationalization, 153

character encoding, 53

spell checking, 151
IsValid function, 235

J

Java Runtime Environment, 14, 78
Java Runtime Environment (JRE)

deploying, 14

358

Index

javascript
custom dialogs, 118
PostDocument, 48
raise event, 121
JavaScript constructor method, 179, 180
JavaScript library, 5
JREDownloadURL property, 203
JSP
URL encoding content, 54

L

license configuration element, 17, 258
license key
evaluation, 4, 16
license terms, 5
licensing, 16
life-cycle, 20
link configuration element, 253
list control, 64
LiveConnect, 45
LocalDeployment property, 14, 205
Locale property, 206
localhost, 5

mailtolink configuration element, 297
mailtoList configuration element, 296
mediaSettings configuration element, 272
menu

adding custom items, 108

color choosers, 104

commands, 95

element menu, 92

menu bar, 85

removing, 107

shortcut menu, 91

submenus, 93
menubar configuration element, 299
menu configuration element, 300
menultem configuration element, 302
menultemGroup configuration element, 309
menuSeparator configuration element, 311
methods

addView, 25, 30, 181

addViewAsText, 183

addXSDAsText, 185

JavaScript contructor, 179, 180

show, 26, 30, 186

showAsButton, 187
MinimumdJREVersion property, 208
moving elements and attributes within a
schema, 61

(0)
objects

EditLiveXML, 25

Visual Designer, 29
OnlInitComplete property, 209
onsubmit function, 45
optional elements, 60
OutputCharset property, 211

P
performance, 75
Perl
URL encoding content, 55
PHP
URL encoding content, 54
PostDocument function, 236
Preload property, 213
properties
AutoSubmit, 46
BaseURL, 190
ConfigurationFile, 25, 29, 192
ConfigurationText, 193
Cookie, 195
DebuglLevel, 196
document, 25
Document, 198
DownloadDirectory, 5, 25, 29, 199
HideButtonIconURL, 200
HideButtonText, 202
JREDownloadURL, 203
LocalDeployment, 14, 205
Locale, 206
MinimumdJREVersion, 208

359

Index

OnlInitComplete, 209
OutputCharset, 211
Preload, 213
ShowButtonIconURL, 214
ShowButtonText, 216
ShowSystemRequirements, 217
UseWebDav, 218
XSDAsText, 30, 220
XSDURL, 25, 221
property
AutoSubmit, 189
property dialogs
custom dialogs, 118

R

realm configuration element, 290
redistributing EditLive! for XML, 5
repeating elements, 60

repeating groups, 61

repository configuration element, 285

retrieving content, 45
rich text control, 64
rich text data type
(see also xhtml)
root elements, 56

S

sample

basic integration, 23

visual designer integration, 27
samples, 4
schema, 21

attributes, 57

creating, 56

data types, 58

elements, 57

group elements, 57

root, 56
schemas, 20

saving from Visual Designer, 45
SetDocument function, 238
SetProperties function, 240
SetXMLNodeValue function, 242

shortcutMenu configuration element, 342
showAsButton method, 187
ShowButtonlconURL property, 214
ShowButtonText property, 216
show method, 26, 30, 186
ShowSystemRequirementsError property, 217
shrtMenu configuration element, 343
shrtMenultem configuration element, 344
shrtMenuSeparator configuration element,
348
sourceEditor configuration element, 269
spellCheck configuration element, 261
spell checker
customizing dictionaries, 80
international dictionaries, 151
string data type, 58
style configuration element, 256
submenu configuration element, 317

T

tab views, 106
text box control, 64
time data type, 59
time picker control, 64
toolbarButton configuration element, 325
toolbarButtonGroup configuration element,
322
toolbarComboBox configuration element, 328
toolbar configuration element, 319
toolbars, 88

adding custom items, 108

buttons, 95

color choosers, 104

removing, 107
toolbars configuration element, 319
toolbarSeparator configuration element, 323

U

upgrading, 15

UploadImages function, 244

uploading images, 125

URL encoding content, 53
ASP, 53

360

Index

ASP.NET, 53
ColdFusion, 55
JSP, 54
Perl, 55
PHP, 54
UseWebDAYV property, 218

Vv

views, 20, 21
adding attributes, 62
adding elements, 62
creating multiple, 65
saving from Visual Designer, 46
Visual Designer, 20
exporting files, 66
introducing, 56
retrieving content, 66
saving schemas, 45
saving views, 46
visualdesigner.js file, 28
VisualDesigner object, 29

W
WebDAV

configuration, 141
webdav

enabling web server, 146
webdav configuration element, 283
wordImport configuration element, 271
wysiwygEditor configuration element, 266

X

xhtml data type, 60

XML document, 22

xmlEditor configuration element, 268
XSDAsText property, 30, 220
XSDURL property, 25, 221

XSLT, 21

361

	Ephox EditLive! for XML Developer's Guide
	Table of Contents
	Chapter 1. Introduction
	Ephox EditLive! for XML Product Information
	System Requirements
	Client Requirements
	Supported Application Servers

	Chapter 2. EditLive! for XML Install Guide
	General Server Install Instructions
	Deploying the EditLive! for XML Sample Integrations
	EditLive! for XML Evaluation License
	Redistributing EditLive! for XML
	Redistributing the Java Runtime Environment from a Local Server
	Packaged Image Upload Handler Scripts
	See Also

	Ephox EditLive! for XML JavaScript Installation Guide
	Introduction
	Installation Details
	Other Install
	Web Server Deployment

	What to do when you have Finished the Installation Process

	Ephox EditLive! for XML IIS Installation Guide
	Introduction
	Installation Details
	Once You Have Successfully Installed Ephox EditLive! for XML

	Ephox EditLive! for XML Sample Java Server Installation with Apache Tomcat
	Introduction
	Sample Tomcat Installation Guide

	Deploying to an External Web Server
	Introduction
	Deployment Details

	EditLive! for XML Client Install
	What is Required to Use EditLive! for XML
	Installing the JRE from the Web Application Server
	Installing the JRE from a Sun Microsystems Server

	Getting the Java Runtime Environment
	Installing the EditLive! for XML Client
	Dealing with a java.lang.ClassNotFound Exception

	Chapter 3. Getting Started
	Licensing EditLive! for XML
	Introduction
	Development and Trial Licenses
	Requesting a License
	Installing a License
	Installing Multiple Licenses
	Timed Licenses
	Using a Limited Seat License

	See Also

	EditLive! for XML Overview
	Introduction
	EditLive! for XML Components
	EditLive! for XML Life-Cycle
	Files Used by EditLive! for XML
	Summary

	Chapter 4. Integrating EditLive! for XML
	Basic Integrations
	Introduction
	EditLive! for XML Basic JavaScript Integration
	Getting Started
	Required Skills
	Overview

	Integrating EditLive! for XML
	See Also

	Visual Designer Integration
	Getting Started
	Required Skills
	Overview

	Integrating the Visual Designer

	EditLive! for XML Life-Cycle Example Integration
	Overview
	Required Skills
	Example Files

	Form Selection - Default Page
	Designer Page
	EditLive! for XML Page
	View Page

	Default Values of EditLive! for XML Load-Time Properties
	Retrieving Content from Ephox EditLive! for XML
	Introduction
	Automatic Submission
	Disabling the onsubmit Content Submission

	JavaScript Runtime API Functions
	Example

	Ensuring Output is XHTML or XML Compliant
	Summary

	Submitting EditLive! for XML Content Directly Via HTTP POST
	Introduction
	Configuring the PostDocument Parameters
	Working with the HTTP Response
	Important Considerations when Implementing EditLive! for XML with HTTP POST
	Summary
	See Also

	Encoding Content for Use with EditLive! for XML
	Introduction
	URL Encoding Functions
	ASP
	ASP .NET (C#)
	JSP (Java)
	PHP
	ColdFusion
	Perl

	Summary

	Chapter 5. Visual Designer
	Using the Visual Designer
	Introduction
	Creating and Editing a Schema
	Naming the Root Element
	Adding a Group
	Adding an Element
	Adding an Attribute
	Specifying Data Types for Simple Elements and Attributes
	Specifying Constraints and Defaults
	Optional Elements
	Repeating Elements
	Moving an Element, Attribute or Group

	Designing a View
	Creating Rich Text Content for a View
	Adding Elements and Attributes to a View
	Adding Form Controls to a View
	Form Controls
	Action Buttons

	Adding Repeating Elements to a View

	Creating Multiple Views
	Visual Designer Output Formats
	Retrieving Content from the Visual Designer
	Exporting Files from the Visual Designer
	Conclusion

	Chapter 6. Cascading Style Sheet Support
	Ephox EditLive! for XML and CSS
	Introduction
	Adding Styles to EditLive! for XML
	Specifying Inline and Block Styles

	Including Styles via the Configuration File
	Linking to an External Style Sheet
	Defining an Embedded Style Sheet

	Importing Styles from Microsoft Word
	Populating the Styles Drop-down List Box
	Summary
	See Also

	Using Ephox CSS Extensions with Custom Tags
	Specifying Rendering for a Custom Tag
	More Information

	Chapter 7. Deployment Optimizations
	Minimizing an EditLive! for XML Deployment
	Summary
	See Also

	Optimizing EditLive! for XML Load Times
	Introduction
	Preloading the Java Plug-in
	Example

	Configuring EditLive! for XML via ConfigurationText
	Example

	Setting the Data Model, Views and XML Document
	Example

	Deploying the Java Runtime Environment
	Example

	Summary
	See Also

	Chapter 8. Customizing EditLive! for XML
	Creating Custom Dictionaries for Ephox EditLive! for XML
	Introduction
	Specifying a Custom Dictionary
	Modifying the Current Custom Dictionary
	Removing the Current Custom Dictionary
	Setting the Spell Checker for EditLive! for XML
	Example
	Summary
	See Also

	Customizing the EditLive! for XML Interface
	Introduction
	The Menu Bar
	Menu Items
	Menu Item Groups
	Menu Separators
	The About Dialog

	Toolbars
	Toolbar Buttons
	Toolbar Button Groups
	Toolbar Combo Boxes
	Toolbar Separators

	The Shortcut Menu
	The Element Menu
	Submenus
	EditLive! for XML Interface Command Collection
	Menu and Toolbar Button Items
	EditLive! for XML Specific Menu and Toolbar Button Items
	Visual Designer Specific Menu and Shortcut Menu Items
	Menu Item and Toolbar Button Groups

	Customizing Available Items
	Customizing the Color Choosers

	Creating New Items
	Tab Views
	Removing the Menu Bar and Toolbars
	Limiting the Functionality of EditLive! for XML
	Summary

	Custom Menu and Toolbar Items for EditLive! for XML
	Introduction
	Custom Toolbar Options
	Examples

	Custom Menu Items
	Example

	Inserting HTML and Hyperlinks at the Cursor
	Examples

	Enabling Custom Items Only in XHTML Sections
	Raising a JavaScript Event
	Example

	Using Custom Properties Dialogs
	POSTing the Content of EditLive! for XML
	Example

	Summary
	See Also

	Chapter 9. Using JavaScript for Customization
	Custom Properties Dialogs for EditLive! for XML
	Introduction
	When to Use Custom Properties Dialogs
	Interacting with EditLive! for XML and Custom Properties Dialogs
	JavaScript API for Custom Properties
	Retrieving the Current Properties
	Setting New Properties

	The ephoxTagID Attribute
	The tag Attribute
	Standalone Attributes

	Summary
	See Also

	Raising a JavaScript Event from Ephox EditLive! for XML
	Introduction
	Configuring EditLive! for XML to Raise JavaScript Events
	Examples

	Using JavaScript Functions with Raise Event
	Advanced Custom Functionality with Raise Event and EditLive! for XML
	Summary
	See Also

	Chapter 10. Image Upload
	Using HTTP for Image Upload in Ephox EditLive! for XML
	Overview
	Why use HTTP?
	Requirements for HTTP Image Upload
	EditLive! for XML HTTP Image Upload Configuration
	HTTP Image Upload - href
	HTTP Image Upload - base

	When are Images Actually Uploaded?
	What Form Field are Images Uploaded In?
	Dynamically Setting the Image URL
	Example Image Upload Scripts
	Common Problems
	See Also

	ASP HTTP Image Upload Handler Script
	Summary
	Defining the location of the image upload handler script
	Defining the location of the image upload directory
	An example image upload handler script
	See Also

	ASP.NET HTTP Image Upload Handler Script
	Summary
	Defining the location of the image upload handler script
	Defining the location of the image upload directory
	An example image upload handler script
	Configuring EditLive! for XML to use the Image Upload Script
	See Also

	JSP HTTP Image Upload Handler Script
	Summary
	Defining the location of the image upload handler script
	Defining the location of the image upload directory
	Setting Up the Sample JSP Image Upload Script
	Installing the Upload Script on the Web Server
	Configuring EditLive! for XML to Use the JSP Image Upload Script
	See Also

	Chapter 11. Using WebDAV with EditLive! for XML
	Using WebDAV with EditLive! for XML
	Introduction
	Using WebDAV with Images in EditLive! for XML
	Configuring EditLive! for XML for Use with WebDAV
	Basic Configuration Example
	Setting a Default Browsing Directory
	MIME Type Filtering with WebDAV
	Password Protected WebDAV Repositories

	Summary
	See Also

	Enabling WebDAV on a Web Server
	Introduction
	Microsoft IIS 5.0
	Apache Tomcat
	Apache Web Server
	Summary
	See Also

	Chapter 12. Internationalization Support
	Using Different Dictionaries with Ephox EditLive! for XML
	Introduction
	Setting the Spell Checker for EditLive! for XML
	Adding Words to the Local Dictionary
	Example

	Available Spell Checkers
	Summary
	See Also

	Using Different Character Sets with EditLive! for XML
	Introduction
	Supported Character Sets
	Setting the Character Set via the Document
	Summary

	Chapter 13. Ephox CSS Extensions for Custom Tags
	display Attribute
	Description
	Permitted Values
	Example

	ephox-end-icon Attribute
	Description
	Permitted Values
	Example

	ephox-end-label Attribute
	Description
	Permitted Values
	Example

	ephox-icon Attribute
	Description
	Permitted Values
	Example

	ephox-label Attribute
	Description
	Permitted Values
	Example

	ephox-start-icon Attribute
	Description
	Permitted Values
	Example

	ephox-start-label Attribute
	Description
	Permitted Values
	Example

	Chapter 14. Using EditLive! for XML Without The Visual Designer
	Creating XSLTs Without The Visual Designer
	Introduction
	Design Considerations
	Context Node
	Imports and Includes
	XPath Expressions

	Using Ephox XSLT Extensions
	Introduction
	Declaring The Namespace
	Supported Extensions
	Automatically Added Buttons
	Understanding the Current Element or Context Node

	ephox:button Element
	Required Attributes
	Optional Attributes

	ephox:autoaddbuttons Attribute
	Possible Values
	Example

	ephox:displayas Attribute
	Possible Values
	Examples
	Using a Standard Field
	Using a Password Field
	Using a Check Box
	Using a Combo Box
	Using an Editable Combo Box
	Using a Date Picker
	Using a Time Picker
	Using a Date and Time Picker

	ephox:items and ephox:displayitems Attributes
	Introduction
	ephox:items Attribute
	Possible Values

	ephox:displayitems Attribute
	Possible Values

	Examples
	Using ephox:items And ephox:displayitems Together
	Using ephox:items Alone
	Using ephox:displayitems Alone

	ephox:readonly Attribute
	Introduction
	Possible Values
	Example

	Chapter 15. Instantiation API
	EditLive! for XML JavaScript Constructor
	Description
	Syntax
	Parameters
	Examples
	Remarks

	Visual Designer JavaScript Constructor
	Description
	Syntax
	Parameters
	Examples
	Remarks

	addView Method
	Description
	Syntax
	Parameters
	Examples
	Remarks

	addViewAsText Method
	Description
	Syntax
	Parameters
	Examples
	Remarks

	addXSDAsText Method
	Description
	Syntax
	Parameters
	Examples
	Remarks

	show Method
	Description
	Syntax
	Examples
	Remarks
	See Also

	showAsButton Method
	Description
	Syntax
	Parameters
	Examples
	Remarks

	AutoSubmit Property
	Description
	Syntax
	Parameters
	Example
	Remarks

	BaseURL Property
	Description
	Syntax
	Parameters
	Example
	Remarks
	See Also

	ConfigurationFile Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	ConfigurationText Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	Cookie Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	DebugLevel Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	Document Property
	Description
	Syntax
	Parameters
	Example
	Remarks

	DownloadDirectory Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	HideButtonIconURL Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	HideButtonText Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	JREDownloadURL Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	LocalDeployment Property
	Description
	Syntax
	Parameters
	Example
	See Also

	Locale Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	MinimumJREVersion Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	OnInitComplete Property
	Description
	Syntax
	Parameters
	Example

	OutputCharset Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	Preload Property
	Description
	Syntax
	Parameters
	Example
	Remarks

	ShowButtonIconURL Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	ShowButtonText Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	ShowSystemRequirementsError Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	UseWebDAV Property
	Description
	Syntax
	Parameters
	Examples
	Remarks
	See Also

	XSDAsText Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	XSDURL Property
	Description
	Syntax
	Parameters
	Examples
	Remarks

	Chapter 16. JavaScript Runtime API
	GetCharCount Function
	Description
	Syntax
	Parameters
	Example

	GetDocument Function
	Description
	Syntax
	Parameters
	Example
	Remarks

	GetSelectedText Function
	Description
	Syntax
	Parameters
	Example
	Remarks

	GetWordCount Function
	Description
	Syntax
	Parameters
	Example

	InsertHTMLAtCursor Function
	Description
	Syntax
	Parameters
	Example

	InsertHyperlinkAtCursor Function
	Description
	Syntax
	Parameters
	Example
	Remarks

	IsValid Function
	Description
	Syntax
	Parameters
	Example

	PostDocument Function
	Description
	Syntax
	Parameters
	Example

	SetDocument Function
	Description
	Syntax
	Parameters
	Example

	SetProperties Function
	Description
	Syntax
	Parameters
	Example
	Remarks
	See Also

	SetXMLNodeValue Function
	Description
	Syntax
	Parameters
	Example
	Remarks

	UploadImages Function
	Description
	Syntax
	Parameters
	Example
	Remarks
	See Also

	Chapter 17. XML Configuration API
	<editLive> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<document> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<html> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<head> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<base> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks
	See Also

	<link> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks
	See Also

	<style> Configuration Element
	Configuration Element Tree Structure
	Example
	Remarks

	<ephoxLicenses> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Example
	Remarks

	<license> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<spellCheck> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks

	<htmlFilter> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<wysiwygEditor> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Child Elements
	Example
	Remarks

	<xmlEditor> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks

	<sourceEditor> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks

	<wordImport> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Example
	Remarks

	<mediaSettings> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<images> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Child Elements
	Remarks

	<httpImageUpload> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Child Elements
	Example
	Remarks
	See Also

	<httpUploadData> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Example
	Remarks

	<imageList> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<image> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<webdav> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<repository> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks
	See Also

	<authentication> Configuration Element
	Configuration Element Tree Structure
	Child Configuration Elements
	Remarks

	<realm> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Examples
	Remarks

	<hyperlinks> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<hyperlinkList> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<hyperlink> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<mailtoList> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<mailtolink> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<menuBar> Configuration Element
	Configuration Element Tree Structure
	Optional Attributes
	Child Elements
	Example
	Remarks

	<menu> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Child Elements
	Example
	Remarks

	<menuItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Examples
	Remarks
	See Also

	<designerMenuItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Examples
	Remarks

	<menuItemGroup> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Examples
	Remarks

	<menuSeparator> Configuration Element
	Configuration Element Tree Structure
	Examples
	Remarks

	<customMenuItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Examples
	Remarks
	See Also

	<submenu> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Child Elements
	Examples
	Remarks
	See Also

	<toolbars> Element
	Element Tree Structure
	Child Elements
	Remarks

	<toolbar> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Child Elements
	Example
	Remarks

	<toolbarButtonGroup> Element
	Element Tree Structure
	Required Attributes
	Example
	Remarks

	<toolbarSeparator> Configuration Element
	Configuration Element Tree Structure
	Example
	Remarks

	<toolbarButton> Element
	Element Tree Structure
	Required Attributes
	Example
	Remarks

	<toolbarComboBox> Element
	Element Tree Structure
	Required Attributes
	Child Elements
	Example
	Remarks
	See Also

	<comboBoxItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Example
	Remarks

	<customToolbarButton> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Example
	Remarks
	See Also

	<customToolbarComboBox> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Optional Attributes
	Child Elements
	Example
	Remarks

	<customComboBoxItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Example
	Remarks
	See Also

	<shortcutMenu> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<shrtMenu> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<shrtMenuItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Example
	Remarks

	<shrtMenuSeparator> Configuration Element
	Configuration Element Tree Structure
	Examples
	Remarks

	<elementMenu> Configuration Element
	Configuration Element Tree Structure
	Child Elements
	Remarks

	<elementMenuItem> Configuration Element
	Configuration Element Tree Structure
	Required Attributes
	Example
	Remarks

	Index

