Name of project : Animal Identification Expert System

A simple expert system which attempts to identify an animal based on its
characteristics .

Programming by : Mohammed Al Thobiti

License : GPL V.3

Notes:

e | devolved this project depending on other similar project.
e | wrote the code from zero.
e This project is released under GPL license, so you can modify /

redistribute it's without any restrictions.

Name of Expert system : Animal Identification ES .

Domain of Expert system : Education / Classification .

Interface : Yes or No questions .

Knowledge representation method : Production rules (if -> then)
Objectives :

A simple expert system which attempts to identify a non backbone/backbone
animal based on its characteristics.

Tools used in this project : CLIPS Shell / VC++ .
Data structure technique : Graph (And /OR) .
Inference : Forward chaining . (Data driven) .

Graph of the system shown in next page :

Backbone ¥ no

Live primarily in soil ¥

na T)
| |
Body in segments ¥ Flat body *
1 1
"] = i |] =
Marny cells to P L
digest its fogd of Have a shell 7 Animal is flat Animal is a waorm
a stomach ? worm {leach
] T yes
| | no |] _ves
attached Animal is a
mute:la; one permanantly to cehtipeda Have a tail ¥
an object 7 millipede insect
na yes
1 1 1
[] "]
Animal is Spiral shaped Arimal is a 5 Anirmal is a
protozoa shell 7 jeliyiish Haue spikes ? Anlmal s 3 crab Iobster
1 1
il |] ve |] ve
Protected by two : . ' Animal is a coral [Animal ks Sea-
half-shells ¥ Animal is a snail SpOnge anemone
1
fo | | yes
Anirmal is a sgquid Animal is a
[octopus clam foyster

Sample Of Rules :

Rule 1 :

if (Backbone=no And Live primarily in soil=yes And Flat body = yes)
Then

Animal is a worm/leach .

Rule 2 :

if (Backbone=no And Live primarily in soil=yes And Flat body = no)
Then

Animalis a flat worm.

Rule 3 :

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=no)

Then

Animal is a centipede/millipede/insect .

Rule 4 :

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=yes And Have a tail=yes)

Then

Animal is a lobster .

Rule 5:

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=yes And Have a tail=no)

Then

Animalis acrab.

Rule 6 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=yes And Have
Spikes=yes)

Then

Animal is Sea-anemone.

Rule 7 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=yes And Have
Spikes=no)

Then

Animal is coral / sponge.

Rule 8 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=no)

Then

Animal is jellyfish.

Rule 9 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=no)

Then

Animal is protozoa.

Rule 10 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=yes)

Then

Animal is a snail.

Rule 11:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=yes)

Then

Animal is a snail.

Rule 12:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=no And Protected by two half-shells=yes)

Then

Animal is a clam/oyster.

Rule 13:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=no And Protected by two half-shells=no)

Then

Animal is a Animal is a squid / octopus.

The code :

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

(defrule main-backbone

(initial-fact)

=>

(printout
(printout
(printout
(printout
(printout

printout

printout

t " ==== = "crlf)
t " Animal Identification Expert System "crlf)

t " Programming by: Mohammed D. Al Thobiti "crlf)

t " E-mail:mmmlllm@gmail.com "crlf)

t " A simple expert system which attempts to identify "crlf)

t " an animal based on its characteristics. "crlf)

t VMe=m====m==s==s==s==ss======================================= "crlf)

t"Does your animal have a backbone ?(yes/no) ")

assert (why))
assert (backbone (read))))

(
(
(printout
(
(

rorr

backbone

(

(
=>

(

(

defrule non-backbone

no)

printout t"Does your animal live primarily in soil ?(yes/no)
assert(live-in-soil (read))))

rorr

(

(
=>

(printout

(

defrule soil-yes
live-in-soil yes)

t "Does your animal have a flat body? (yes/no) ")

assert (flat-body (read))))

rorr

printout

defrule flat-body-yes
flat-body yes)

t"Your animal is a flat-worm" crlf)

bind $?animal flat-worm)
assert (animal-is $?animal)))

rorr

printout

defrule flat-body-no
flat-body no)

t"Your animal is a worm/leach" crlf)

bind $?animal worm leach)
assert (animal-is $?animal)))

rrr

(

(
=>

(printout

(

defrule soil-no
live-in-soil no)

t "Is the animals body in segments? (yes/no)")

assert (body-in-segments (read))))

rrr

(

(
=>

(printout

(

defrule body-segments-yes
body-in-segments yes)

t"Does your animal have a shell? (yes/no)")

assert (animal-have-shell (read))))

")

62 ;;;====================== .

63 (defrule shell-yes

64 (animal-have-shell yes)

65 =>

66 (printout t"Does you animal have a tail? (yes/no)")
(

67 (assert(animal-have-tail (read))))

68 ;;;================== ————
69 (defrule tail-yes

70 (animal-have-tail yes)

71 =>

(
(
72 (printout t"Your animal is a lobster"crlf)
(
(

73 (bind $?animal lobster)

74 (assert (animal-is $?animal)))

75 ;; ; ============s=ss—s=sssssssSsSSSSSSSSSSSSSSSSSSSSSSSSSS====
76 (defrule tail-no

77 (animal-have-tail no)

78 =>

79 (printout t"Your animal is a crab" crlf)

80 (bind $?animal crab)

81 (assert(animal-is $?animal)))

82 ;3 ============—==————————————————————————==
83 (defrule shell-no

84 (animal-have-shell no)

85 =>

86 (printout t"Your animal is a cehtiped/millipede/insect " crlf)
87 (bind $?animal cehtiped millipede insect)

88 (assert (animal-is $?animal)))

89 ;>

90 (defrule body-segments-no

91 (body-in-segments no)

92 =>

93 (printout t"Does your animal use many cells to digest its food insted of a
stomach? (yes/no) ")

94 (assert(many-cells(read))))

95 ; e
96 (defrule many-cells-to-digest-yes
97 (many-cells yes)

98 =>

99 (printout t"Is your animal attached permanently to an object? (yes/no)")
100 (assert(animal-attached-to-object(read))))

101 ;5 e e
102 (defrule no-attached-to-object

103 (animal-attached-to-object no)

104 =>

105 (printout t"Your animal is a jellyfish " crlf)

106 (bind $?animal jellyfish)

107 (assert(animal-is $?animal)))

108 ;; ; ================= S e E e B LS e e e e e e e
109 (defrule yes-attachment-to-object

110 (animal-attached-to-object yes)

111 =>

112 (printout t"Does your animal normally have spikes radiating fromits body?
(yes/no) ")

113 (assert(have-spike (read))))

114 ;; ;===================== ====

115 (defrule spike-yes

116 (have-spike yes)

117 =>

118 (printout t "Your animal is Sea-anemone " crlf)
119 (bind $?animal Sea-anemone)

120 (assert(animal-is $?animal)))

121 ;; ;===================== ====

122 (defrule spike-no

123 (have-spike no)

124 =>

125 (printout t "Your animal is coral/sponge " crlf)

126 (bind $?animal coral sponge)

127 (assert(animal-is $?animal)))

128 ;;j=s==mmmmmmmmmmmmm e

129 (defrule many-cells-to-digest-no

130 (many-cells no)

131 =>

132 (printout t"Is your animal made up of arethan one cell? (yes/no) ")
133 (assert(one-cell (read))))

134 ;;;=ss=mmmmmmmmmmmme e

135 (defrule one-cell-no

136 (one-cell no)

137 =>

138 (printout t "Your animal is Protozoa " crlf)

139 (bind $?animal Protozoa)
140 (assert(animal-is $?animal)))
141 ;i3 ==

142 (defrule one-cell-yes
143 (one-cell yes)

144 =>

145 (printout t "Does your animal have a shaped-shell? (yes/no) " crlf)
146 (assert(spiral-shaped-shell (read))))

147 ;;;

148 (defrule spiral-shaped-shell-yes

149 (spiral-shaped-shell yes)

150 =>

151 (printout t "Your animal is a snail " crlf)

152 (bind $?animal snail)

153 (assert(animal-is $?animal)))

154 ;;; e i
155 (defrule spiral-shaped-shell-no

156 (spiral-shaped-shell no)

157 =>

158 (printout t "Is your animal protected by two half-shells? (yes/no) " crlf)
159 (assert(two-half-shells(read))))

160 ;;; e e S EEaEE

161 (defrule two-shell-yes

162 (two-half-shells yes)

163 =>

164 (printout t "Your animal is a clam/oyster " crlf)
165 (bind $?animal clam oyster)

166 (assert(animal-is $?animal)))

167

168 (defrule two-shell-no

169 (two-half-shells no)

170 =>

171 (printout t "Your animal is a squid/octopus " crlf)

(
172 (bind $?animal squid octopus)
173 (assert(animal-is $?animal)))
174
175 ;; ;===================== ====
176 ;;;%**
177 ;; ;===================== ====
178 ;. %**
179 ;; ;=================
180 (defrule yes-backbone
181 (backbone yes)

182 =>

183 (printout t"Is the animal warm blooded ?(yes/no) ")

184 (assert(warm-blooded (read))))

185 ;;;===================== ===

186 (defrule warm-blooded-no

187 (warm-blooded no)

188 =>

189 (printout t"IS your animal always in water? (yes/no) ")

190 (assert(animal-in-water (read))))

191

192 (defrule animal-always-in-water-yes

193 (animal-in-water yes)

194 =>

195 (printout t "Does your animal have a boney skeketon? (yes/no) ")

196 (assert(boney-skeketon (read))))

197

198 (defrule boney-skeketon-yes

199 (boney-skeketon yes)

200 =>

201 (printout t "Your animal is a fish " crlf)

202 (bind $?animal fish)
(

203 (assert(animal-is $?animal)))

204

205 (defrule boney-skeketon-no

206 (boney-skeketon no)

207 =>

208 (printout t "Your animal is a shark/ray " crlf)

(
209 (bind $?animal shark ray)
210 (assert(animal-is $?animal)))
211
212 (defrule animal-always-in-water-no
213 (animal-in-water no)
214 =>
215 (printout t "Is your animal covered with scaled skin? (yes/no) ")
216 (assert(scaled-skin(read))))
217
218 (defrule scaled-skin-no
219 (scaled-skin no)
220 =>
221 (printout t"Does your animal jump? (yes/no) ")
222 (assert(animal-jump (read))))

223

224 (defrule jump-yes

225 (animal-jump yes)

226 =>

227 (printout t "Your animal is a frog " crlf)

(
228 (bind $?animal frog)
(

229 (assert(animal-is $?animal)))

230

231 (defrule jump-no

232 (animal-jump no)

233 =>

234 (printout t "Your animal is a salamander " crlf)

(
235 (bind $?animal salamander)
236 (assert(animal-is $?animal)))
237
238 (defrule scaled-skin-yes
239 (scaled-skin yes)
240 =>
241 (printout t"Does the animal have a rounded shell? (yes/no) ")
242 (assert (rounded-shell (read))))

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
")

275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

(
(
(

(
(

defrule rounded-shell-yes

(
(rounded-shell yes)

>

printout t "Your animal is a trurtle " crlf)

bind $?animal trurtle)
assert(animal-is $?animal)))

defrule rounded-shell-no
rounded-shell no)

=>
printout t "Does your animal have limbs? (yes/no) "

(
(

(
(
(

(
(
(

(
(

assert (have-limbs (read))))

defrule limbs-yes

(
(have-limbs yes)

>

crlf)

printout t "Your animal is a crocodile/alligator " crlf)

bind $?animal crocodile alligator)
assert(animal-is $?animal)))

defrule limbs-no

(
(have-limbs no)

>

printout t "Your animal is a snake " crlf)
bind $?animal snake)

assert(animal-is $?animal)))

defrule warm-blooded-yes
warm-blooded yes)

=

(printout t"Does the female of your animal nurse its young with milk?

(

(
(
(

(
(

assert(drink-milk (read))))

defrule bird

(
(drink-milk no)

>

printout t "Your animal is a bird/penguin " crlf)

bind $?animal bird penguin)
assert(animal-is $?animal)))

defrule drink-milk-yes
drink-milk yes)

=>

(
(

(
(

printout t "Does your animal eat red meat?
assert (eat-red-meat (read))))

defrule eat-red-meat-yes
eat-red-meat yes)

=>

(
(

(
(
(

printout t "Can your animal fly? (yes/no)")
assert(animal-fly(read))))

defrule fly-yes

(
(animal-fly yes)

>

printout t "Your animal is a bat " crlf)
bind $?animal bat)

assert(animal-is $?animal)))

(yes/no)

n)

(yes/no)

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

(defrule fly-no
(animal-fly no)
=>

(printout t "Does Your animal have an opposing thumb? (yes/no) ")

(assert (oppesing-thumb (read))))

(defrule oppesing-thumb-yes
(oppesing-thumb yes)
=>

(printout t "Does your animal have a prehensile tail? (yes/no)")

(assert (prehensile-tail (read))))

(defrule prehensile-tail-yes
(prehensile-tail yes)

=>

(printout t "Your animal is monkey" crlf)
(bind $?animal monkey)

(assert(animal-is $?animal)))

(defrule prehensile-tail-no

(prehensile-tail no)

=>

(printout t "Is Your animal nearly hairless? (yes/no) ")
(assert (hairless (read))))

(defrule hairless-yes

(hairless yes)

=>

(printout t "Your animal is man" crlf)
(bind $?animal man)

(assert(animal-is $?animal)))

(defrule hairless-no
(hairless no)
=>

(printout t "Does your animal have long powerfull arms? (yes/no) ")

(assert (have-long-arms (read))))

(defrule arms-yes
(have-long-arms yes)
=>

printout t "Your animal is orangutan/gorilla/chimpanzie " crlf)

(
(bind $?animal orangutan gorilla chimpanzie)
(assert (animal-is $?animal)))

(defrule arms-no

(have-long-arms no)

=>

(printout t "Your animal is babon " crlf)
(bind $?animal babon)

(assert(animal-is $?animal)))

(defrule oppesing-thumb-no

(oppesing-thumb no)

=>

(printout t "Does an adult normally weight over 400 pounds?
(assert (weight-over400 (read))))

(defrule weight-over400-yes
(weight-over400 yes)
=>

(yes/no)")

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

(printout t "Is your animal land based? (yes/no) ")
(assert(land-based(read))))

(defrule land-based-yes

(land-based yes)

=>

(printout t "Your animal is a bear/tiger/lion" crlf)
(bind $?animal bear tiger lion)

(assert(animal-is $?animal)))

(defrule land-based-no

(land-based no)

=>

(printout t "Your animal is a walrus" crlf)
(bind $?animal walrus)

(assert(animal-is $?animal)))

(defrule weight-over400-no

(weight-over400 no)

=>

(printout t "Does your animal have a thin tail? (yes/no) ")
(assert(thin-tail (read))))

(defrule thin-tail-yes

(thin-tail yes)

=>

(printout t "Your animal is a Cat " crlf)
(bind $?animal Cat)

(assert(animal-is $?animal)))

(defrule thin-tail-no

(thin-tail no)

=>

(printout t "Your animal is a cayote/wolf/fox/dog " crlf)
(bind $?animal cayote wolf fox dog)

(assert (animal-is $?animal)))

(defrule eat-red-meat-no

(eat-red-meat no)

=>

(printout t "Does your animal have hooves? (yes/no)")
(assert (have-hooves (read))))

(defrule have-hooves-yes
(have-hooves yes)
=>

(printout t "Does your animal stand on two toes/hoves per foot?

(assert (two-toes (read))))

(defrule two-toes-no
(two-toes no)
=>

(printout t "Is your animal covered with a protective plating?

(assert (protective-plating (read))))

(defrule protective-plating-yes
(protective-plating yes)

=>

(printout t "Your animal is a rhinoceros " crlf)
(bind $?animal rhinoceros)

(assert(animal-is $?animal)))

(yes/no)

(yes/no)

n)

n)

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(defrule protective-plating-no
(protective-plating no)

=>

(printout t "Your animal is a
(bind $?animal horse zebra)
(assert(animal-is $?animal)))

(defrule two-toes-yes
(two-toes vyes)

=>

(printout t "Does your animal
(assert (have-horns (read))))

(defrule horns-no
(have-horns no)
=>

(printout t "Does your animal normally live in the desert?

(assert(live-in-desert (read)))

(defrule desert-yes
(live-in-desert yes)

=>

(printout t "Your animal is a
(bind $?animal camel)
(assert(animal-is $?animal)))

(defrule desert-no
(live-in-desert no)

=>

(printout t "Your animal is a
(bind $?animal giraffe)
(assert (animal-is $?animal)))

(defrule horns-yes
(have-horns yes)

=>

(printout t "Does your animal
(assert (one-in-horn(read))))

(defrule one-horn-yes
(one-in-horn yes)

=>

(printout t "Your animal is a
(bind $?animal hippopotamus)
(assert (animal-is $?animal)))

(defrule one-horn-no
(one-in-horn no)

=>

(printout t "Does your animal
(assert (have-fleece(read))))

(defrule fleece-yes
(have-fleece yes)

=>

(printout t "Your animal is a
(bind $?animal sheep goat)
(assert(animal-is $?animal)))

(defrule fleece-no

horse/zebra " crlf)

have horns? (yes/no)

)

camel " crlf)

giraffe " crlf)

")

have one horn? (yes/no)

hippopotamus " crlf)

have fleece? (yes/no)

sheep/goat " crlf)

")

)

(yes/no)

")

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

(have-fleece no)
=>

(printout t "Is your animal domesticated ? (yes/no) ")

(assert (domesticated(read))))

(defrule domesticated-yes

(domesticated yes)

=>

(printout t "Your animal is a cow " crlf)
(bind $?animal cow)

(assert(animal-is $?animal)))

(defrule domesticated-no
(domesticated no)
=>

printout t "Your animal is a deer/moose/antelope " crlf)

(
(bind $?animal deer moose antelope)
(assert(animal-is $?animal)))

(defrule have-hooves-no
(have-hooves no)
=>

(printout t "Does your animal live in water? (yes/no) ")

(assert(live-in-water (read))))

(defrule live-in-water-yes
(live-in-water yes)
=>

(printout t "Is your animal unfortunately, commercically hunted ?

(assert (commercically-hunted (read))))

(defrule hunted-yes

(commercically-hunted yes)

=>

(printout t "Your animal is a whale " crlf)
(bind $?animal whale)

(assert (animal-is $?animal)))

(defrule hunted-no
(commercically-hunted no)
=>

printout t "Your animal is a dolphin/porpoise " crlf)

(
(bind $?animal dolphin porpoise)
(assert (animal-is $?animal)))

(defrule live-in-water-no
(live-in-water no)
=>

(printout t "Does your animal large front teeth ?

(assert(large-front-teeth(read))))

(defrule front-teeth-yes

(large-front-teeth yes)

=>

(printout t "Does your animal have large ears?
(assert(large-ears (read))))

(defrule large-ears-yes

(large-ears yes)

=>

(printout t "Your animal is a rabbit " crlf)

(yes/no)

(yes/no)

")

vv)

(yes/no)

ll)

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

(bind $?animal rabbit)
(assert(animal-is $?animal)))

(defrule large-ears-no

(large—-ears no)

=>

(printout t "Your animal is unknown " crlf))

(defrule front-teeth-no

(large-front-teeth no)

=>

(printout t "Does your animal have a pouch? (yes/no) ")
(assert (have-pouch (read))))

(defrule pouch-yes

(have-pouch yes)

=>

(printout t "Your animal is a kangaroo/koala bear " crlf)
(bind $?animal kangaroo koala-bear)

(assert(animal-is $?animal)))

(defrule pouch-no

(have-pouch no)

=>

(printout t "Your animal is a mole/shrew/elephant " crlf)
(bind $?animal mole shrew elephant)

(assert(animal-is $?animal)))

(defrule explanation
(why)
=>
printout t "============================== " crlf)
retract 0)

facts)

printout t "============================== " crlf)

(
(
(
(

)

Testing of the system :

CLIPS> (run)

Animal Identification Expert System
A simple expert system which attempts to identify

an animal based on its characteristics.

Does your animal have a backbone ?(yes/no) no

Does your animal live primarily in soil ?(yes/no) yes
Does your animal have a flat body? (yes/no) yes

Your animal is a flat-worm

CLIP>>

Does your animal have a backbone ?(yes/no) no

Does your animal live primarily in soil ?(yes/no) no
Is the animals body in segments? (yes/no)no

Does your animal use many cells to digest its food insted of a
stomach? (yes/no) yes

Is your animal attached permanently to an object? (yes/no)yes

Does your animal normally have spikes radiating fromits body? (yes/no)
yes

Your animal is Sea—-anemone

Animal Identification Expert System

Programming by: Mohammed D. Al Thobiti
Email:mmmliiimPgmail.com

A zimple expert system which attempts to identify
an animal based on its characteristics.

Does your animal have a bhackbone Y<{wves/no} no

Doesz vour animal live primarily in soil ?7C{vesno? no
Iz the animals body in segments? C(wves/ noryes

Doez vour animal have a shell? {(yessnolues

Doez you animal have a tail? <(yes-nolyes

Your animal iz a lohster

Chackbone noZ
Clive—-in—so0il noX
Chody—in—segments yes?
Canimal-have—zhell ves>
Canimal-have—tail uves)>
Canimal-is lohster>

For a total of 7 facts.

CUPS 6.3 - [Dialog Window!

¥ File Edit Buffer Execution

O |=|u| |

&l s

Browse

Window Help

Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:

shellyves +j+
tailyes +j+|
tail-no +j+
shellFno ++|

body-segments-no +j+|
many-cellsto-digestyes +)+]

no-sttached-to-object ++|

yes-attachment-to-object +j+)

spikeyes +j+]
spike-no +j+|

many-cells-to-digestno +)+

one-cellno +j+|
one-cellyes +j+|

spiral-shaped-shel-yes +)+
spiral-shaped-shell-no +j+]

two-shellyas ++4
two-shell-no +j+

Animal ldentification Expert System

A simple expert system which atternpts to identity
a non hackhone animal based on its characteristics.

Does wour animal hawve a backbone Yyes/no) no
Does wvour animal live primarily in soil Yiyvesfno) ves
Does vour animal hawve aflat body? (vesfno) ves
“'our animal is a flatworm

CLIPS> (resef)
CLIPS> (run)

