Name of project : Animal Identification Expert System

A simple expert system which attempts to identify an animal based on its
characteristics .

Programming by : Mohammed Al Thobiti

License : GPL V.3




Notes:

e | devolved this project depending on other similar project.
e | wrote the code from zero.
e This project is released under GPL license, so you can modify /

redistribute it's without any restrictions.



Name of Expert system : Animal Identification ES .

Domain of Expert system : Education / Classification .

Interface : Yes or No questions .

Knowledge representation method : Production rules (if -> then)
Objectives :

A simple expert system which attempts to identify a non backbone/backbone
animal based on its characteristics.

Tools used in this project : CLIPS Shell / VC++ .
Data structure technique : Graph (And /OR) .
Inference : Forward chaining . (Data driven) .

Graph of the system shown in next page :
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Sample Of Rules :

Rule 1 :

if (Backbone=no And Live primarily in soil=yes And Flat body = yes )
Then

Animal is a worm/leach .

Rule 2 :

if (Backbone=no And Live primarily in soil=yes And Flat body = no )
Then

Animalis a flat worm.

Rule 3 :

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=no)

Then

Animal is a centipede/millipede/insect .

Rule 4 :

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=yes And Have a tail=yes)

Then

Animal is a lobster .

Rule 5:

if (Backbone=no And Live primarily in soil=no And Body in segments = yes And Have a
shell=yes And Have a tail=no)

Then

Animalis acrab.




Rule 6 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=yes And Have
Spikes=yes )

Then

Animal is Sea-anemone.

Rule 7 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=yes And Have
Spikes=no )

Then

Animal is coral / sponge.

Rule 8 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=yes And attached permanently to an object=no )

Then

Animal is jellyfish.

Rule 9 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=no )

Then

Animal is protozoa.

Rule 10 :

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=yes )

Then

Animal is a snail.



Rule 11:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=yes )

Then

Animal is a snail.

Rule 12:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=no And Protected by two half-shells=yes )

Then

Animal is a clam/oyster.

Rule 13:

if (Backbone=no And Live primarily in soil=no And Body in segments = no And Many cells
to digest its food of a stomach=no And Animal have more than on cell=yes And spiral
shaped shell=no And Protected by two half-shells=no )

Then

Animal is a Animal is a squid / octopus.




The code :
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(defrule main-backbone

(initial-fact)

=>

(printout
(printout
(printout
(printout
(printout

printout

printout

t " ==== = "crlf)
t " Animal Identification Expert System "crlf)

t " Programming by: Mohammed D. Al Thobiti "crlf)

t " E-mail:mmmlllm@gmail.com "crlf)

t " A simple expert system which attempts to identify "crlf)

t " an animal based on its characteristics. "crlf)

t VMe=m====m==s==s==s==ss======================================= "crlf)

t"Does your animal have a backbone ?(yes/no) ")

assert (why))
assert (backbone (read))))

(
(
(printout
(
(

rorr

backbone

(

(
=>

(

(

defrule non-backbone

no)

printout t"Does your animal live primarily in soil ?(yes/no)
assert(live-in-soil (read))))

rorr

(

(
=>

(printout

(

defrule soil-yes
live-in-soil yes)

t "Does your animal have a flat body? (yes/no) ")

assert (flat-body (read))))

rorr

printout

defrule flat-body-yes
flat-body yes)

t"Your animal is a flat-worm" crlf)

bind $?animal flat-worm)
assert (animal-is $?animal)))

rorr

printout

defrule flat-body-no
flat-body no)

t"Your animal is a worm/leach" crlf)

bind $?animal worm leach)
assert (animal-is $?animal)))

rrr

(

(
=>

(printout

(

defrule soil-no
live-in-soil no)

t "Is the animals body in segments? (yes/no)")

assert (body-in-segments (read))))

rrr

(

(
=>

(printout

(

defrule body-segments-yes
body-in-segments yes)

t"Does your animal have a shell? (yes/no)")

assert (animal-have-shell (read))))

")



62 ;;;====================== .

63 (defrule shell-yes

64 (animal-have-shell yes)

65 =>

66 (printout t"Does you animal have a tail? (yes/no)")
(

67 (assert(animal-have-tail (read))))

68 ;;;================== ————
69 (defrule tail-yes

70 (animal-have-tail yes)

71 =>

(
(
72 (printout t"Your animal is a lobster"crlf)
(
(

73 (bind $?animal lobster)

74 (assert (animal-is $?animal)))

75 ;; ; ============s=ss—s=sssssssSsSSSSSSSSSSSSSSSSSSSSSSSSSS====
76 (defrule tail-no

77 (animal-have-tail no)

78 =>

79 (printout t"Your animal is a crab" crlf)

80 (bind $?animal crab)

81 (assert(animal-is $?animal)))

82 ;3 ============—==————————————————————————==
83 (defrule shell-no

84 (animal-have-shell no)

85 =>

86 (printout t"Your animal is a cehtiped/millipede/insect " crlf)
87 (bind $?animal cehtiped millipede insect)

88 (assert (animal-is $?animal)))

89 ;>

90 (defrule body-segments-no

91 (body-in-segments no)

92 =>

93 (printout t"Does your animal use many cells to digest its food insted of a
stomach? (yes/no) ")

94 (assert(many-cells(read))))

95 ; e
96 (defrule many-cells-to-digest-yes
97 (many-cells yes)

98 =>

99 (printout t"Is your animal attached permanently to an object? (yes/no)")
100 (assert(animal-attached-to-object(read))))

101 ;5 e e
102 (defrule no-attached-to-object

103 (animal-attached-to-object no)

104 =>

105 (printout t"Your animal is a jellyfish " crlf)

106 (bind $?animal jellyfish)

107 (assert(animal-is $?animal)))

108 ;; ; ================= S e E e B LS e e e e e e e
109 (defrule yes-attachment-to-object

110 (animal-attached-to-object yes)

111 =>

112 (printout t"Does your animal normally have spikes radiating fromits body?
(yes/no) ")

113 (assert(have-spike (read))))

114 ;; ;===================== ====

115 (defrule spike-yes

116 (have-spike yes)

117 =>

118 (printout t "Your animal is Sea-anemone " crlf)
119 (bind $?animal Sea-anemone)

120 (assert(animal-is $?animal)))



121 ;; ;===================== ====

122 (defrule spike-no

123 (have-spike no)

124 =>

125 (printout t "Your animal is coral/sponge " crlf)

126 (bind $?animal coral sponge)

127 (assert(animal-is $?animal)))

128 ;;j=s==mmmmmmmmmmmmm e

129 (defrule many-cells-to-digest-no

130 (many-cells no)

131 =>

132 (printout t"Is your animal made up of arethan one cell? (yes/no) ")
133 (assert(one-cell (read))))

134 ;;;=ss=mmmmmmmmmmmme e

135 (defrule one-cell-no

136 (one-cell no)

137 =>

138 (printout t "Your animal is Protozoa " crlf)

139 (bind $?animal Protozoa)
140 (assert(animal-is $?animal)))
141 ;i3 ==

142 (defrule one-cell-yes
143 (one-cell yes)

144 =>

145 (printout t "Does your animal have a shaped-shell? (yes/no) " crlf)
146 (assert(spiral-shaped-shell (read))))

147 ;;;

148 (defrule spiral-shaped-shell-yes

149 (spiral-shaped-shell yes)

150 =>

151 (printout t "Your animal is a snail " crlf)

152 (bind $?animal snail)

153 (assert(animal-is $?animal)))

154 ;;; e i
155 (defrule spiral-shaped-shell-no

156 (spiral-shaped-shell no)

157 =>

158 (printout t "Is your animal protected by two half-shells? (yes/no) " crlf)
159 (assert(two-half-shells(read))))

160 ;;; e e S  EEaEE

161 (defrule two-shell-yes

162 (two-half-shells yes)

163 =>

164 (printout t "Your animal is a clam/oyster " crlf)
165 (bind $?animal clam oyster)

166 (assert(animal-is $?animal)))

167

168 (defrule two-shell-no

169 (two-half-shells no)

170 =>

171 (printout t "Your animal is a squid/octopus " crlf)

(
172 (bind $?animal squid octopus)
173 (assert(animal-is $?animal)))
174
175 ;; ;===================== ====
176 ;;;%**
177 ;; ;===================== ====
178 ;. %**
179 ;; ;=================
180 (defrule yes-backbone
181 (backbone yes)




182 =>

183 (printout t"Is the animal warm blooded ?(yes/no) ")

184 (assert(warm-blooded (read))))

185 ;;;===================== ===

186 (defrule warm-blooded-no

187 (warm-blooded no)

188 =>

189 (printout t"IS your animal always in water? (yes/no) ")

190 (assert(animal-in-water (read))))

191

192 (defrule animal-always-in-water-yes

193 (animal-in-water yes)

194 =>

195 (printout t "Does your animal have a boney skeketon? (yes/no) ")

196 (assert(boney-skeketon (read))))

197

198 (defrule boney-skeketon-yes

199 (boney-skeketon yes)

200 =>

201 (printout t "Your animal is a fish " crlf)

202 (bind $?animal fish)
(

203 (assert(animal-is $?animal)))

204

205 (defrule boney-skeketon-no

206 (boney-skeketon no)

207 =>

208 (printout t "Your animal is a shark/ray " crlf)

(
209 (bind $?animal shark ray)
210 (assert(animal-is $?animal)))
211
212 (defrule animal-always-in-water-no
213 (animal-in-water no)
214 =>
215 (printout t "Is your animal covered with scaled skin? (yes/no) ")
216 (assert(scaled-skin(read))))
217
218 (defrule scaled-skin-no
219 (scaled-skin no)
220 =>
221 (printout t"Does your animal jump? (yes/no) ")
222 (assert(animal-jump (read))))

223

224 (defrule jump-yes

225 (animal-jump yes)

226 =>

227 (printout t "Your animal is a frog " crlf)

(
228 (bind $?animal frog)
(

229 (assert(animal-is $?animal)))

230

231 (defrule jump-no

232 (animal-jump no)

233 =>

234 (printout t "Your animal is a salamander " crlf)

(
235 (bind $?animal salamander)
236 (assert(animal-is $?animal)))
237
238 (defrule scaled-skin-yes
239 (scaled-skin yes)
240 =>
241 (printout t"Does the animal have a rounded shell? (yes/no) ")
242 (assert (rounded-shell (read))))
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(
(
(

(
(

defrule rounded-shell-yes

(
(rounded-shell yes)

>

printout t "Your animal is a trurtle " crlf)

bind $?animal trurtle)
assert(animal-is $?animal)))

defrule rounded-shell-no
rounded-shell no)

=>
printout t "Does your animal have limbs? (yes/no) "

(
(

(
(
(

(
(
(

(
(

assert (have-limbs (read))))

defrule limbs-yes

(
(have-limbs yes)

>

crlf)

printout t "Your animal is a crocodile/alligator " crlf)

bind $?animal crocodile alligator)
assert(animal-is $?animal)))

defrule limbs-no

(
(have-limbs no)

>

printout t "Your animal is a snake " crlf)
bind $?animal snake)

assert(animal-is $?animal)))

defrule warm-blooded-yes
warm-blooded yes)

=

(printout t"Does the female of your animal nurse its young with milk?

(

(
(
(

(
(

assert(drink-milk (read))))

defrule bird

(
(drink-milk no)

>

printout t "Your animal is a bird/penguin " crlf)

bind $?animal bird penguin)
assert(animal-is $?animal)))

defrule drink-milk-yes
drink-milk yes)

=>

(
(

(
(

printout t "Does your animal eat red meat?
assert (eat-red-meat (read))))

defrule eat-red-meat-yes
eat-red-meat yes)

=>

(
(

(
(
(

printout t "Can your animal fly? (yes/no)")
assert(animal-fly(read))))

defrule fly-yes

(
(animal-fly yes)

>

printout t "Your animal is a bat " crlf)
bind $?animal bat)

assert(animal-is $?animal)))

(yes/no)

n)

(yes/no)
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(defrule fly-no
(animal-fly no)
=>

(printout t "Does Your animal have an opposing thumb? (yes/no) " )

(assert (oppesing-thumb (read))))

(defrule oppesing-thumb-yes
(oppesing-thumb yes)
=>

(printout t "Does your animal have a prehensile tail? (yes/no)" )

(assert (prehensile-tail (read))))

(defrule prehensile-tail-yes
(prehensile-tail yes)

=>

(printout t "Your animal is monkey" crlf)
(bind $?animal monkey)

(assert(animal-is $?animal)))

(defrule prehensile-tail-no

(prehensile-tail no)

=>

(printout t "Is Your animal nearly hairless? (yes/no) " )
(assert (hairless (read))))

(defrule hairless-yes

(hairless yes)

=>

(printout t "Your animal is man" crlf)
(bind $?animal man)

(assert(animal-is $?animal)))

(defrule hairless-no
(hairless no)
=>

(printout t "Does your animal have long powerfull arms? (yes/no) " )

(assert (have-long-arms (read))))

(defrule arms-yes
(have-long-arms yes)
=>

printout t "Your animal is orangutan/gorilla/chimpanzie " crlf)

(
(bind $?animal orangutan gorilla chimpanzie)
(assert (animal-is $?animal)))

(defrule arms-no

(have-long-arms no)

=>

(printout t "Your animal is babon " crlf)
(bind $?animal babon)

(assert(animal-is $?animal)))

(defrule oppesing-thumb-no

(oppesing-thumb no)

=>

(printout t "Does an adult normally weight over 400 pounds?
(assert (weight-over400 (read))))

(defrule weight-over400-yes
(weight-over400 yes)
=>

(yes/no)" )
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(printout t "Is your animal land based? (yes/no) ")
(assert(land-based(read))))

(defrule land-based-yes

(land-based yes)

=>

(printout t "Your animal is a bear/tiger/lion" crlf)
(bind $?animal bear tiger lion)

(assert(animal-is $?animal)))

(defrule land-based-no

(land-based no)

=>

(printout t "Your animal is a walrus" crlf)
(bind $?animal walrus)

(assert(animal-is $?animal)))

(defrule weight-over400-no

(weight-over400 no)

=>

(printout t "Does your animal have a thin tail? (yes/no) ")
(assert(thin-tail (read))))

(defrule thin-tail-yes

(thin-tail yes)

=>

(printout t "Your animal is a Cat " crlf)
(bind $?animal Cat)

(assert(animal-is $?animal)))

(defrule thin-tail-no

(thin-tail no)

=>

(printout t "Your animal is a cayote/wolf/fox/dog " crlf)
(bind $?animal cayote wolf fox dog)

(assert (animal-is $?animal)))

(defrule eat-red-meat-no

(eat-red-meat no)

=>

(printout t "Does your animal have hooves? (yes/no)")
(assert (have-hooves (read))))

(defrule have-hooves-yes
(have-hooves yes)
=>

(printout t "Does your animal stand on two toes/hoves per foot?

(assert (two-toes (read))))

(defrule two-toes-no
(two-toes no)
=>

(printout t "Is your animal covered with a protective plating?

(assert (protective-plating (read))))

(defrule protective-plating-yes
(protective-plating yes)

=>

(printout t "Your animal is a rhinoceros " crlf)
(bind $?animal rhinoceros)

(assert(animal-is $?animal)))

(yes/no)

(yes/no)

n)

n)
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(defrule protective-plating-no
(protective-plating no)

=>

(printout t "Your animal is a
(bind $?animal horse zebra)
(assert(animal-is $?animal)))

(defrule two-toes-yes
(two-toes vyes)

=>

(printout t "Does your animal
(assert (have-horns (read))))

(defrule horns-no
(have-horns no)
=>

(printout t "Does your animal normally live in the desert?

(assert(live-in-desert (read)))

(defrule desert-yes
(live-in-desert yes)

=>

(printout t "Your animal is a
(bind $?animal camel)
(assert(animal-is $?animal)))

(defrule desert-no
(live-in-desert no)

=>

(printout t "Your animal is a
(bind $?animal giraffe)
(assert (animal-is $?animal)))

(defrule horns-yes
(have-horns yes)

=>

(printout t "Does your animal
(assert (one-in-horn(read))))

(defrule one-horn-yes
(one-in-horn yes)

=>

(printout t "Your animal is a
(bind $?animal hippopotamus)
(assert (animal-is $?animal)))

(defrule one-horn-no
(one-in-horn no)

=>

(printout t "Does your animal
(assert (have-fleece(read))))

(defrule fleece-yes
(have-fleece yes)

=>

(printout t "Your animal is a
(bind $?animal sheep goat)
(assert(animal-is $?animal)))

(defrule fleece-no

horse/zebra " crlf)

have horns? (yes/no)

)

camel " crlf)

giraffe " crlf)

")

have one horn? (yes/no)

hippopotamus " crlf)

have fleece? (yes/no)

sheep/goat " crlf)

")

)

(yes/no)

")
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(have-fleece no)
=>

(printout t "Is your animal domesticated ? (yes/no) ")

(assert (domesticated(read))))

(defrule domesticated-yes

(domesticated yes)

=>

(printout t "Your animal is a cow " crlf)
(bind $?animal cow)

(assert(animal-is $?animal)))

(defrule domesticated-no
(domesticated no)
=>

printout t "Your animal is a deer/moose/antelope " crlf)

(
(bind $?animal deer moose antelope)
(assert(animal-is $?animal)))

(defrule have-hooves-no
(have-hooves no)
=>

(printout t "Does your animal live in water? (yes/no) ")

(assert(live-in-water (read))))

(defrule live-in-water-yes
(live-in-water yes)
=>

(printout t "Is your animal unfortunately, commercically hunted ?

(assert (commercically-hunted (read))))

(defrule hunted-yes

(commercically-hunted yes)

=>

(printout t "Your animal is a whale " crlf)
(bind $?animal whale)

(assert (animal-is $?animal)))

(defrule hunted-no
(commercically-hunted no)
=>

printout t "Your animal is a dolphin/porpoise " crlf)

(
(bind $?animal dolphin porpoise)
(assert (animal-is $?animal)))

(defrule live-in-water-no
(live-in-water no)
=>

(printout t "Does your animal large front teeth ?

(assert(large-front-teeth(read))))

(defrule front-teeth-yes

(large-front-teeth yes)

=>

(printout t "Does your animal have large ears?
(assert(large-ears (read))))

(defrule large-ears-yes

(large-ears yes)

=>

(printout t "Your animal is a rabbit " crlf)

(yes/no)

(yes/no)

")

vv)

(yes/no)

ll)
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(bind $?animal rabbit)
(assert(animal-is $?animal)))

(defrule large-ears-no

(large—-ears no)

=>

(printout t "Your animal is unknown " crlf))

(defrule front-teeth-no

(large-front-teeth no)

=>

(printout t "Does your animal have a pouch? (yes/no) ")
(assert (have-pouch (read))))

(defrule pouch-yes

(have-pouch yes)

=>

(printout t "Your animal is a kangaroo/koala bear " crlf)
(bind $?animal kangaroo koala-bear)

(assert(animal-is $?animal)))

(defrule pouch-no

(have-pouch no)

=>

(printout t "Your animal is a mole/shrew/elephant " crlf)
(bind $?animal mole shrew elephant)

(assert(animal-is $?animal)))

(defrule explanation
(why)
=>
printout t "============================== " crlf)
retract 0)

facts)

printout t "============================== " crlf)

(
(
(
(

)



Testing of the system :

CLIPS> (run)

Animal Identification Expert System
A simple expert system which attempts to identify

an animal based on its characteristics.

Does your animal have a backbone ?(yes/no) no

Does your animal live primarily in soil ?(yes/no) yes
Does your animal have a flat body? (yes/no) yes

Your animal is a flat-worm

CLIP>>

Does your animal have a backbone ?(yes/no) no

Does your animal live primarily in soil ?(yes/no) no
Is the animals body in segments? (yes/no)no

Does your animal use many cells to digest its food insted of a
stomach? (yes/no) yes

Is your animal attached permanently to an object? (yes/no)yes

Does your animal normally have spikes radiating fromits body? (yes/no)
yes

Your animal is Sea—-anemone

Animal Identification Expert System

Programming by: Mohammed D. Al Thobiti
Email:mmmliiimPgmail.com

A zimple expert system which attempts to identify
an animal based on its characteristics.

Does your animal have a bhackbone Y<{wves/no} no

Doesz vour animal live primarily in soil ?7C{vesno? no
Iz the animals body in segments? C(wves/ noryes

Doez vour animal have a shell? {(yessnolues

Doez you animal have a tail? <(yes-nolyes

Your animal iz a lohster

Chackbone noZ
Clive—-in—so0il noX
Chody—in—segments yes?
Canimal-have—zhell ves>
Canimal-have—tail uves)>
Canimal-is lohster>

For a total of 7 facts.
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Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:
Defining defrule:

shellyves +j+
tailyes +j+|
tail-no +j+
shellFno ++|

body-segments-no +j+|
many-cellsto-digestyes +)+]

no-sttached-to-object ++|

yes-attachment-to-object +j+)

spikeyes +j+]
spike-no +j+|

many-cells-to-digestno +)+

one-cellno +j+|
one-cellyes +j+|

spiral-shaped-shel-yes +)+
spiral-shaped-shell-no +j+]

two-shellyas ++4
two-shell-no +j+

Animal ldentification Expert System

A simple expert system which atternpts to identity
a non hackhone animal based on its characteristics.

Does wour animal hawve a backbone Yyes/no) no
Does wvour animal live primarily in soil Yiyvesfno) ves
Does vour animal hawve aflat body? (vesfno) ves
“'our animal is a flatworm

CLIPS> (resef)
CLIPS> (run)




